summaryrefslogtreecommitdiff
path: root/libre/acpi_call-lts/PKGBUILD
blob: 13afc8bd9f6b53ae5a281e15ef9ced8110e6f8aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Maintainer (Arch): Maxime Gauduin <alucryd@gmail.com>
# Contributor (Arch): mortzu <me@mortzu.de>
# Contributor (Arch): fnord0 <fnord0@riseup.net>
# Contributor (Hyperbola): André Silva <emulatorman@hyperbola.info>
# Contributor (Hyperbola): Márcio Silva <coadde@hyperbola.info>
# Maintainer: Omar Vega Ramos <ovruni@gnu.org.pe>

_basekernel=5.4.28-1

pkgname=acpi_call-lts
pkgver=1.1.0
pkgrel=131
pkgrel+=.parabola1.basekernel${_basekernel%-*}
pkgdesc='A linux kernel module that enables calls to ACPI methods through /proc/acpi/call'
pkgdesc+=' (built for the linux-libre-lts kernel package)'
url='https://github.com/mkottman/acpi_call'
arch=('x86_64')
arch+=('i686' 'armv7h')
license=('GPL')
makedepends=(linux-libre-lts-headers=${_basekernel%-*} libelf)
provides=('acpi_call')
source=("acpi_call-${pkgver}.tar.gz::https://github.com/mkottman/acpi_call/archive/v${pkgver}.tar.gz")
sha256sums=('d0d14b42944282724fca76f57d598eed794ef97448f387d1c489d85ad813f2f0')

prepare() {
  cd acpi_call-$pkgver

  # Fix build with Linux-libre >= 3.17-gnu
  sed -i 's|acpi/acpi.h|linux/acpi.h|' acpi_call.c

  # Fix build with Linux-libre >= 4.12
  sed -i 's|asm/uaccess.h|linux/uaccess.h|' acpi_call.c
}

build() {
  cd acpi_call-$pkgver
  make KVERSION="$(</usr/src/linux-libre-lts/version)"
}

package() {
  depends=(linux-libre-lts=${_basekernel%-*})

  cd acpi_call-$pkgver
  _extradir="/usr/lib/modules/$(</usr/src/linux-libre-lts/version)/extramodules"
  install -Dt "$pkgdir$_extradir" -m644 *.ko
  find "$pkgdir" -name '*.ko' -exec xz {} +

  echo acpi_call | install -Dm644 /dev/stdin "$pkgdir/usr/lib/modules-load.d/$pkgname.conf"

  mkdir -p "$pkgdir/usr/share/$pkgname"
  cp -t "$pkgdir/usr/share/$pkgname" -dr --no-preserve=ownership examples support
}

# vim:set ts=2 sw=2 et: