summaryrefslogtreecommitdiff
path: root/kernels/xen/dom0_xz_decompression.patch
diff options
context:
space:
mode:
authorNicolás Reynolds <fauno@kiwwwi.com.ar>2012-12-31 17:29:39 -0300
committerNicolás Reynolds <fauno@kiwwwi.com.ar>2012-12-31 17:29:39 -0300
commit6f102d1647580e0bb9513c124b26a64c77da4f15 (patch)
tree0340f1f588be251183fe2b251bdba778f2c85c22 /kernels/xen/dom0_xz_decompression.patch
parent433900b14f11dc9ee55b72e8e5946bf47f65b636 (diff)
parentb6cb10de275cea63bab0bee2a98342afa4fdc4ee (diff)
downloadabslibre-6f102d1647580e0bb9513c124b26a64c77da4f15.tar.gz
abslibre-6f102d1647580e0bb9513c124b26a64c77da4f15.tar.bz2
abslibre-6f102d1647580e0bb9513c124b26a64c77da4f15.zip
Merge branch 'master' of ssh://gparabola/srv/git/abslibre
Diffstat (limited to 'kernels/xen/dom0_xz_decompression.patch')
-rwxr-xr-xkernels/xen/dom0_xz_decompression.patch3528
1 files changed, 0 insertions, 3528 deletions
diff --git a/kernels/xen/dom0_xz_decompression.patch b/kernels/xen/dom0_xz_decompression.patch
deleted file mode 100755
index 277ebcfd2..000000000
--- a/kernels/xen/dom0_xz_decompression.patch
+++ /dev/null
@@ -1,3528 +0,0 @@
-diff --git a/xen/common/Makefile b/xen/common/Makefile
---- a/xen/common/Makefile
-+++ b/xen/common/Makefile
-@@ -43,7 +43,7 @@
- obj-y += rbtree.o
- obj-y += lzo.o
-
--obj-$(CONFIG_X86) += decompress.o bunzip2.o unlzma.o unlzo.o
-+obj-$(CONFIG_X86) += decompress.o bunzip2.o unxz.o unlzma.o unlzo.o
-
- obj-$(perfc) += perfc.o
- obj-$(crash_debug) += gdbstub.o
-diff --git a/xen/common/decompress.c b/xen/common/decompress.c
---- a/xen/common/decompress.c
-+++ b/xen/common/decompress.c
-@@ -20,6 +20,9 @@
- if ( len >= 3 && !memcmp(inbuf, "\x42\x5a\x68", 3) )
- return bunzip2(inbuf, len, NULL, NULL, outbuf, NULL, error);
-
-+ if ( len >= 6 && !memcmp(inbuf, "\3757zXZ", 6) )
-+ return unxz(inbuf, len, NULL, NULL, outbuf, NULL, error);
-+
- if ( len >= 2 && !memcmp(inbuf, "\135\000", 2) )
- return unlzma(inbuf, len, NULL, NULL, outbuf, NULL, error);
-
-diff --git a/xen/common/decompress.h b/xen/common/decompress.h
---- a/xen/common/decompress.h
-+++ b/xen/common/decompress.h
-@@ -8,6 +8,7 @@
-
- #define STATIC
- #define INIT __init
-+#define INITDATA __initdata
-
- static void(*__initdata error)(const char *);
- #define set_error_fn(x) error = x;
-diff --git a/xen/common/unxz.c b/xen/common/unxz.c
-new file mode 100644
---- /dev/null
-+++ b/xen/common/unxz.c
-@@ -0,0 +1,306 @@
-+/*
-+ * Wrapper for decompressing XZ-compressed kernel, initramfs, and initrd
-+ *
-+ * Author: Lasse Collin <lasse.collin@tukaani.org>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+/*
-+ * Important notes about in-place decompression
-+ *
-+ * At least on x86, the kernel is decompressed in place: the compressed data
-+ * is placed to the end of the output buffer, and the decompressor overwrites
-+ * most of the compressed data. There must be enough safety margin to
-+ * guarantee that the write position is always behind the read position.
-+ *
-+ * The safety margin for XZ with LZMA2 or BCJ+LZMA2 is calculated below.
-+ * Note that the margin with XZ is bigger than with Deflate (gzip)!
-+ *
-+ * The worst case for in-place decompression is that the beginning of
-+ * the file is compressed extremely well, and the rest of the file is
-+ * uncompressible. Thus, we must look for worst-case expansion when the
-+ * compressor is encoding uncompressible data.
-+ *
-+ * The structure of the .xz file in case of a compresed kernel is as follows.
-+ * Sizes (as bytes) of the fields are in parenthesis.
-+ *
-+ * Stream Header (12)
-+ * Block Header:
-+ * Block Header (8-12)
-+ * Compressed Data (N)
-+ * Block Padding (0-3)
-+ * CRC32 (4)
-+ * Index (8-20)
-+ * Stream Footer (12)
-+ *
-+ * Normally there is exactly one Block, but let's assume that there are
-+ * 2-4 Blocks just in case. Because Stream Header and also Block Header
-+ * of the first Block don't make the decompressor produce any uncompressed
-+ * data, we can ignore them from our calculations. Block Headers of possible
-+ * additional Blocks have to be taken into account still. With these
-+ * assumptions, it is safe to assume that the total header overhead is
-+ * less than 128 bytes.
-+ *
-+ * Compressed Data contains LZMA2 or BCJ+LZMA2 encoded data. Since BCJ
-+ * doesn't change the size of the data, it is enough to calculate the
-+ * safety margin for LZMA2.
-+ *
-+ * LZMA2 stores the data in chunks. Each chunk has a header whose size is
-+ * a maximum of 6 bytes, but to get round 2^n numbers, let's assume that
-+ * the maximum chunk header size is 8 bytes. After the chunk header, there
-+ * may be up to 64 KiB of actual payload in the chunk. Often the payload is
-+ * quite a bit smaller though; to be safe, let's assume that an average
-+ * chunk has only 32 KiB of payload.
-+ *
-+ * The maximum uncompressed size of the payload is 2 MiB. The minimum
-+ * uncompressed size of the payload is in practice never less than the
-+ * payload size itself. The LZMA2 format would allow uncompressed size
-+ * to be less than the payload size, but no sane compressor creates such
-+ * files. LZMA2 supports storing uncompressible data in uncompressed form,
-+ * so there's never a need to create payloads whose uncompressed size is
-+ * smaller than the compressed size.
-+ *
-+ * The assumption, that the uncompressed size of the payload is never
-+ * smaller than the payload itself, is valid only when talking about
-+ * the payload as a whole. It is possible that the payload has parts where
-+ * the decompressor consumes more input than it produces output. Calculating
-+ * the worst case for this would be tricky. Instead of trying to do that,
-+ * let's simply make sure that the decompressor never overwrites any bytes
-+ * of the payload which it is currently reading.
-+ *
-+ * Now we have enough information to calculate the safety margin. We need
-+ * - 128 bytes for the .xz file format headers;
-+ * - 8 bytes per every 32 KiB of uncompressed size (one LZMA2 chunk header
-+ * per chunk, each chunk having average payload size of 32 KiB); and
-+ * - 64 KiB (biggest possible LZMA2 chunk payload size) to make sure that
-+ * the decompressor never overwrites anything from the LZMA2 chunk
-+ * payload it is currently reading.
-+ *
-+ * We get the following formula:
-+ *
-+ * safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536
-+ * = 128 + (uncompressed_size >> 12) + 65536
-+ *
-+ * For comparision, according to arch/x86/boot/compressed/misc.c, the
-+ * equivalent formula for Deflate is this:
-+ *
-+ * safety_margin = 18 + (uncompressed_size >> 12) + 32768
-+ *
-+ * Thus, when updating Deflate-only in-place kernel decompressor to
-+ * support XZ, the fixed overhead has to be increased from 18+32768 bytes
-+ * to 128+65536 bytes.
-+ */
-+
-+#include "decompress.h"
-+
-+#define XZ_EXTERN STATIC
-+
-+/*
-+ * For boot time use, we enable only the BCJ filter of the current
-+ * architecture or none if no BCJ filter is available for the architecture.
-+ */
-+#ifdef CONFIG_X86
-+# define XZ_DEC_X86
-+#endif
-+#ifdef CONFIG_PPC
-+# define XZ_DEC_POWERPC
-+#endif
-+#ifdef CONFIG_ARM
-+# define XZ_DEC_ARM
-+#endif
-+#ifdef CONFIG_IA64
-+# define XZ_DEC_IA64
-+#endif
-+#ifdef CONFIG_SPARC
-+# define XZ_DEC_SPARC
-+#endif
-+
-+/*
-+ * This will get the basic headers so that memeq() and others
-+ * can be defined.
-+ */
-+#include "xz/private.h"
-+
-+/*
-+ * memeq and memzero are not used much and any remotely sane implementation
-+ * is fast enough. memcpy/memmove speed matters in multi-call mode, but
-+ * the kernel image is decompressed in single-call mode, in which only
-+ * memcpy speed can matter and only if there is a lot of uncompressible data
-+ * (LZMA2 stores uncompressible chunks in uncompressed form). Thus, the
-+ * functions below should just be kept small; it's probably not worth
-+ * optimizing for speed.
-+ */
-+
-+#ifndef memeq
-+#define memeq(p1, p2, sz) (memcmp(p1, p2, sz) == 0)
-+#endif
-+
-+#ifndef memzero
-+#define memzero(p, sz) memset(p, 0, sz)
-+#endif
-+
-+#include "xz/crc32.c"
-+#include "xz/dec_stream.c"
-+#include "xz/dec_lzma2.c"
-+#include "xz/dec_bcj.c"
-+
-+/* Size of the input and output buffers in multi-call mode */
-+#define XZ_IOBUF_SIZE 4096
-+
-+/*
-+ * This function implements the API defined in <linux/decompress/generic.h>.
-+ *
-+ * This wrapper will automatically choose single-call or multi-call mode
-+ * of the native XZ decoder API. The single-call mode can be used only when
-+ * both input and output buffers are available as a single chunk, i.e. when
-+ * fill() and flush() won't be used.
-+ */
-+STATIC int INIT unxz(unsigned char *in, unsigned int in_size,
-+ int (*fill)(void *dest, unsigned int size),
-+ int (*flush)(void *src, unsigned int size),
-+ unsigned char *out, unsigned int *in_used,
-+ void (*error_fn)(const char *x))
-+{
-+ struct xz_buf b;
-+ struct xz_dec *s;
-+ enum xz_ret ret;
-+ bool_t must_free_in = false;
-+
-+ set_error_fn(error_fn);
-+
-+ xz_crc32_init();
-+
-+ if (in_used != NULL)
-+ *in_used = 0;
-+
-+ if (fill == NULL && flush == NULL)
-+ s = xz_dec_init(XZ_SINGLE, 0);
-+ else
-+ s = xz_dec_init(XZ_DYNALLOC, (uint32_t)-1);
-+
-+ if (s == NULL)
-+ goto error_alloc_state;
-+
-+ if (flush == NULL) {
-+ b.out = out;
-+ b.out_size = (size_t)-1;
-+ } else {
-+ b.out_size = XZ_IOBUF_SIZE;
-+ b.out = malloc(XZ_IOBUF_SIZE);
-+ if (b.out == NULL)
-+ goto error_alloc_out;
-+ }
-+
-+ if (in == NULL) {
-+ must_free_in = true;
-+ in = malloc(XZ_IOBUF_SIZE);
-+ if (in == NULL)
-+ goto error_alloc_in;
-+ }
-+
-+ b.in = in;
-+ b.in_pos = 0;
-+ b.in_size = in_size;
-+ b.out_pos = 0;
-+
-+ if (fill == NULL && flush == NULL) {
-+ ret = xz_dec_run(s, &b);
-+ } else {
-+ do {
-+ if (b.in_pos == b.in_size && fill != NULL) {
-+ if (in_used != NULL)
-+ *in_used += b.in_pos;
-+
-+ b.in_pos = 0;
-+
-+ in_size = fill(in, XZ_IOBUF_SIZE);
-+ if (in_size < 0) {
-+ /*
-+ * This isn't an optimal error code
-+ * but it probably isn't worth making
-+ * a new one either.
-+ */
-+ ret = XZ_BUF_ERROR;
-+ break;
-+ }
-+
-+ b.in_size = in_size;
-+ }
-+
-+ ret = xz_dec_run(s, &b);
-+
-+ if (flush != NULL && (b.out_pos == b.out_size
-+ || (ret != XZ_OK && b.out_pos > 0))) {
-+ /*
-+ * Setting ret here may hide an error
-+ * returned by xz_dec_run(), but probably
-+ * it's not too bad.
-+ */
-+ if (flush(b.out, b.out_pos) != (int)b.out_pos)
-+ ret = XZ_BUF_ERROR;
-+
-+ b.out_pos = 0;
-+ }
-+ } while (ret == XZ_OK);
-+
-+ if (must_free_in)
-+ free(in);
-+
-+ if (flush != NULL)
-+ free(b.out);
-+ }
-+
-+ if (in_used != NULL)
-+ *in_used += b.in_pos;
-+
-+ xz_dec_end(s);
-+
-+ switch (ret) {
-+ case XZ_STREAM_END:
-+ return 0;
-+
-+ case XZ_MEM_ERROR:
-+ /* This can occur only in multi-call mode. */
-+ error("XZ decompressor ran out of memory");
-+ break;
-+
-+ case XZ_FORMAT_ERROR:
-+ error("Input is not in the XZ format (wrong magic bytes)");
-+ break;
-+
-+ case XZ_OPTIONS_ERROR:
-+ error("Input was encoded with settings that are not "
-+ "supported by this XZ decoder");
-+ break;
-+
-+ case XZ_DATA_ERROR:
-+ case XZ_BUF_ERROR:
-+ error("XZ-compressed data is corrupt");
-+ break;
-+
-+ default:
-+ error("Bug in the XZ decompressor");
-+ break;
-+ }
-+
-+ return -1;
-+
-+error_alloc_in:
-+ if (flush != NULL)
-+ free(b.out);
-+
-+error_alloc_out:
-+ xz_dec_end(s);
-+
-+error_alloc_state:
-+ error("XZ decompressor ran out of memory");
-+ return -1;
-+}
-+
-+/*
-+ * This macro is used by architecture-specific files to decompress
-+ * the kernel image.
-+ */
-+#define decompress unxz
-diff --git a/xen/common/xz/crc32.c b/xen/common/xz/crc32.c
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/crc32.c
-@@ -0,0 +1,51 @@
-+/*
-+ * CRC32 using the polynomial from IEEE-802.3
-+ *
-+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
-+ * Igor Pavlov <http://7-zip.org/>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+/*
-+ * This is not the fastest implementation, but it is pretty compact.
-+ * The fastest versions of xz_crc32() on modern CPUs without hardware
-+ * accelerated CRC instruction are 3-5 times as fast as this version,
-+ * but they are bigger and use more memory for the lookup table.
-+ */
-+
-+#include "private.h"
-+
-+XZ_EXTERN uint32_t INITDATA xz_crc32_table[256];
-+
-+XZ_EXTERN void INIT xz_crc32_init(void)
-+{
-+ const uint32_t poly = 0xEDB88320;
-+
-+ uint32_t i;
-+ uint32_t j;
-+ uint32_t r;
-+
-+ for (i = 0; i < 256; ++i) {
-+ r = i;
-+ for (j = 0; j < 8; ++j)
-+ r = (r >> 1) ^ (poly & ~((r & 1) - 1));
-+
-+ xz_crc32_table[i] = r;
-+ }
-+
-+ return;
-+}
-+
-+XZ_EXTERN uint32_t INIT xz_crc32(const uint8_t *buf, size_t size, uint32_t crc)
-+{
-+ crc = ~crc;
-+
-+ while (size != 0) {
-+ crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8);
-+ --size;
-+ }
-+
-+ return ~crc;
-+}
-diff --git a/xen/common/xz/dec_bcj.c b/xen/common/xz/dec_bcj.c
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/dec_bcj.c
-@@ -0,0 +1,562 @@
-+/*
-+ * Branch/Call/Jump (BCJ) filter decoders
-+ *
-+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
-+ * Igor Pavlov <http://7-zip.org/>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#include "private.h"
-+
-+/*
-+ * The rest of the file is inside this ifdef. It makes things a little more
-+ * convenient when building without support for any BCJ filters.
-+ */
-+#ifdef XZ_DEC_BCJ
-+
-+struct xz_dec_bcj {
-+ /* Type of the BCJ filter being used */
-+ enum {
-+ BCJ_X86 = 4, /* x86 or x86-64 */
-+ BCJ_POWERPC = 5, /* Big endian only */
-+ BCJ_IA64 = 6, /* Big or little endian */
-+ BCJ_ARM = 7, /* Little endian only */
-+ BCJ_ARMTHUMB = 8, /* Little endian only */
-+ BCJ_SPARC = 9 /* Big or little endian */
-+ } type;
-+
-+ /*
-+ * Return value of the next filter in the chain. We need to preserve
-+ * this information across calls, because we must not call the next
-+ * filter anymore once it has returned XZ_STREAM_END.
-+ */
-+ enum xz_ret ret;
-+
-+ /* True if we are operating in single-call mode. */
-+ bool_t single_call;
-+
-+ /*
-+ * Absolute position relative to the beginning of the uncompressed
-+ * data (in a single .xz Block). We care only about the lowest 32
-+ * bits so this doesn't need to be uint64_t even with big files.
-+ */
-+ uint32_t pos;
-+
-+ /* x86 filter state */
-+ uint32_t x86_prev_mask;
-+
-+ /* Temporary space to hold the variables from struct xz_buf */
-+ uint8_t *out;
-+ size_t out_pos;
-+ size_t out_size;
-+
-+ struct {
-+ /* Amount of already filtered data in the beginning of buf */
-+ size_t filtered;
-+
-+ /* Total amount of data currently stored in buf */
-+ size_t size;
-+
-+ /*
-+ * Buffer to hold a mix of filtered and unfiltered data. This
-+ * needs to be big enough to hold Alignment + 2 * Look-ahead:
-+ *
-+ * Type Alignment Look-ahead
-+ * x86 1 4
-+ * PowerPC 4 0
-+ * IA-64 16 0
-+ * ARM 4 0
-+ * ARM-Thumb 2 2
-+ * SPARC 4 0
-+ */
-+ uint8_t buf[16];
-+ } temp;
-+};
-+
-+#ifdef XZ_DEC_X86
-+/*
-+ * This is used to test the most significant byte of a memory address
-+ * in an x86 instruction.
-+ */
-+static inline int INIT bcj_x86_test_msbyte(uint8_t b)
-+{
-+ return b == 0x00 || b == 0xFF;
-+}
-+
-+static size_t INIT bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ static /*const*/ bool_t INITDATA mask_to_allowed_status[8]
-+ = { true, true, true, false, true, false, false, false };
-+
-+ static /*const*/ uint8_t INITDATA mask_to_bit_num[8]
-+ = { 0, 1, 2, 2, 3, 3, 3, 3 };
-+
-+ size_t i;
-+ size_t prev_pos = (size_t)-1;
-+ uint32_t prev_mask = s->x86_prev_mask;
-+ uint32_t src;
-+ uint32_t dest;
-+ uint32_t j;
-+ uint8_t b;
-+
-+ if (size <= 4)
-+ return 0;
-+
-+ size -= 4;
-+ for (i = 0; i < size; ++i) {
-+ if ((buf[i] & 0xFE) != 0xE8)
-+ continue;
-+
-+ prev_pos = i - prev_pos;
-+ if (prev_pos > 3) {
-+ prev_mask = 0;
-+ } else {
-+ prev_mask = (prev_mask << (prev_pos - 1)) & 7;
-+ if (prev_mask != 0) {
-+ b = buf[i + 4 - mask_to_bit_num[prev_mask]];
-+ if (!mask_to_allowed_status[prev_mask]
-+ || bcj_x86_test_msbyte(b)) {
-+ prev_pos = i;
-+ prev_mask = (prev_mask << 1) | 1;
-+ continue;
-+ }
-+ }
-+ }
-+
-+ prev_pos = i;
-+
-+ if (bcj_x86_test_msbyte(buf[i + 4])) {
-+ src = get_unaligned_le32(buf + i + 1);
-+ while (true) {
-+ dest = src - (s->pos + (uint32_t)i + 5);
-+ if (prev_mask == 0)
-+ break;
-+
-+ j = mask_to_bit_num[prev_mask] * 8;
-+ b = (uint8_t)(dest >> (24 - j));
-+ if (!bcj_x86_test_msbyte(b))
-+ break;
-+
-+ src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
-+ }
-+
-+ dest &= 0x01FFFFFF;
-+ dest |= (uint32_t)0 - (dest & 0x01000000);
-+ put_unaligned_le32(dest, buf + i + 1);
-+ i += 4;
-+ } else {
-+ prev_mask = (prev_mask << 1) | 1;
-+ }
-+ }
-+
-+ prev_pos = i - prev_pos;
-+ s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
-+ return i;
-+}
-+#endif
-+
-+#ifdef XZ_DEC_POWERPC
-+static size_t INIT bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ size_t i;
-+ uint32_t instr;
-+
-+ for (i = 0; i + 4 <= size; i += 4) {
-+ instr = get_unaligned_be32(buf + i);
-+ if ((instr & 0xFC000003) == 0x48000001) {
-+ instr &= 0x03FFFFFC;
-+ instr -= s->pos + (uint32_t)i;
-+ instr &= 0x03FFFFFC;
-+ instr |= 0x48000001;
-+ put_unaligned_be32(instr, buf + i);
-+ }
-+ }
-+
-+ return i;
-+}
-+#endif
-+
-+#ifdef XZ_DEC_IA64
-+static size_t INIT bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ static const uint8_t branch_table[32] = {
-+ 0, 0, 0, 0, 0, 0, 0, 0,
-+ 0, 0, 0, 0, 0, 0, 0, 0,
-+ 4, 4, 6, 6, 0, 0, 7, 7,
-+ 4, 4, 0, 0, 4, 4, 0, 0
-+ };
-+
-+ /*
-+ * The local variables take a little bit stack space, but it's less
-+ * than what LZMA2 decoder takes, so it doesn't make sense to reduce
-+ * stack usage here without doing that for the LZMA2 decoder too.
-+ */
-+
-+ /* Loop counters */
-+ size_t i;
-+ size_t j;
-+
-+ /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
-+ uint32_t slot;
-+
-+ /* Bitwise offset of the instruction indicated by slot */
-+ uint32_t bit_pos;
-+
-+ /* bit_pos split into byte and bit parts */
-+ uint32_t byte_pos;
-+ uint32_t bit_res;
-+
-+ /* Address part of an instruction */
-+ uint32_t addr;
-+
-+ /* Mask used to detect which instructions to convert */
-+ uint32_t mask;
-+
-+ /* 41-bit instruction stored somewhere in the lowest 48 bits */
-+ uint64_t instr;
-+
-+ /* Instruction normalized with bit_res for easier manipulation */
-+ uint64_t norm;
-+
-+ for (i = 0; i + 16 <= size; i += 16) {
-+ mask = branch_table[buf[i] & 0x1F];
-+ for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
-+ if (((mask >> slot) & 1) == 0)
-+ continue;
-+
-+ byte_pos = bit_pos >> 3;
-+ bit_res = bit_pos & 7;
-+ instr = 0;
-+ for (j = 0; j < 6; ++j)
-+ instr |= (uint64_t)(buf[i + j + byte_pos])
-+ << (8 * j);
-+
-+ norm = instr >> bit_res;
-+
-+ if (((norm >> 37) & 0x0F) == 0x05
-+ && ((norm >> 9) & 0x07) == 0) {
-+ addr = (norm >> 13) & 0x0FFFFF;
-+ addr |= ((uint32_t)(norm >> 36) & 1) << 20;
-+ addr <<= 4;
-+ addr -= s->pos + (uint32_t)i;
-+ addr >>= 4;
-+
-+ norm &= ~((uint64_t)0x8FFFFF << 13);
-+ norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
-+ norm |= (uint64_t)(addr & 0x100000)
-+ << (36 - 20);
-+
-+ instr &= (1 << bit_res) - 1;
-+ instr |= norm << bit_res;
-+
-+ for (j = 0; j < 6; j++)
-+ buf[i + j + byte_pos]
-+ = (uint8_t)(instr >> (8 * j));
-+ }
-+ }
-+ }
-+
-+ return i;
-+}
-+#endif
-+
-+#ifdef XZ_DEC_ARM
-+static size_t INIT bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ size_t i;
-+ uint32_t addr;
-+
-+ for (i = 0; i + 4 <= size; i += 4) {
-+ if (buf[i + 3] == 0xEB) {
-+ addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
-+ | ((uint32_t)buf[i + 2] << 16);
-+ addr <<= 2;
-+ addr -= s->pos + (uint32_t)i + 8;
-+ addr >>= 2;
-+ buf[i] = (uint8_t)addr;
-+ buf[i + 1] = (uint8_t)(addr >> 8);
-+ buf[i + 2] = (uint8_t)(addr >> 16);
-+ }
-+ }
-+
-+ return i;
-+}
-+#endif
-+
-+#ifdef XZ_DEC_ARMTHUMB
-+static size_t INIT bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ size_t i;
-+ uint32_t addr;
-+
-+ for (i = 0; i + 4 <= size; i += 2) {
-+ if ((buf[i + 1] & 0xF8) == 0xF0
-+ && (buf[i + 3] & 0xF8) == 0xF8) {
-+ addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
-+ | ((uint32_t)buf[i] << 11)
-+ | (((uint32_t)buf[i + 3] & 0x07) << 8)
-+ | (uint32_t)buf[i + 2];
-+ addr <<= 1;
-+ addr -= s->pos + (uint32_t)i + 4;
-+ addr >>= 1;
-+ buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
-+ buf[i] = (uint8_t)(addr >> 11);
-+ buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
-+ buf[i + 2] = (uint8_t)addr;
-+ i += 2;
-+ }
-+ }
-+
-+ return i;
-+}
-+#endif
-+
-+#ifdef XZ_DEC_SPARC
-+static size_t INIT bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
-+{
-+ size_t i;
-+ uint32_t instr;
-+
-+ for (i = 0; i + 4 <= size; i += 4) {
-+ instr = get_unaligned_be32(buf + i);
-+ if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
-+ instr <<= 2;
-+ instr -= s->pos + (uint32_t)i;
-+ instr >>= 2;
-+ instr = ((uint32_t)0x40000000 - (instr & 0x400000))
-+ | 0x40000000 | (instr & 0x3FFFFF);
-+ put_unaligned_be32(instr, buf + i);
-+ }
-+ }
-+
-+ return i;
-+}
-+#endif
-+
-+/*
-+ * Apply the selected BCJ filter. Update *pos and s->pos to match the amount
-+ * of data that got filtered.
-+ *
-+ * NOTE: This is implemented as a switch statement to avoid using function
-+ * pointers, which could be problematic in the kernel boot code, which must
-+ * avoid pointers to static data (at least on x86).
-+ */
-+static void INIT bcj_apply(struct xz_dec_bcj *s,
-+ uint8_t *buf, size_t *pos, size_t size)
-+{
-+ size_t filtered;
-+
-+ buf += *pos;
-+ size -= *pos;
-+
-+ switch (s->type) {
-+#ifdef XZ_DEC_X86
-+ case BCJ_X86:
-+ filtered = bcj_x86(s, buf, size);
-+ break;
-+#endif
-+#ifdef XZ_DEC_POWERPC
-+ case BCJ_POWERPC:
-+ filtered = bcj_powerpc(s, buf, size);
-+ break;
-+#endif
-+#ifdef XZ_DEC_IA64
-+ case BCJ_IA64:
-+ filtered = bcj_ia64(s, buf, size);
-+ break;
-+#endif
-+#ifdef XZ_DEC_ARM
-+ case BCJ_ARM:
-+ filtered = bcj_arm(s, buf, size);
-+ break;
-+#endif
-+#ifdef XZ_DEC_ARMTHUMB
-+ case BCJ_ARMTHUMB:
-+ filtered = bcj_armthumb(s, buf, size);
-+ break;
-+#endif
-+#ifdef XZ_DEC_SPARC
-+ case BCJ_SPARC:
-+ filtered = bcj_sparc(s, buf, size);
-+ break;
-+#endif
-+ default:
-+ /* Never reached but silence compiler warnings. */
-+ filtered = 0;
-+ break;
-+ }
-+
-+ *pos += filtered;
-+ s->pos += filtered;
-+}
-+
-+/*
-+ * Flush pending filtered data from temp to the output buffer.
-+ * Move the remaining mixture of possibly filtered and unfiltered
-+ * data to the beginning of temp.
-+ */
-+static void INIT bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
-+{
-+ size_t copy_size;
-+
-+ copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
-+ memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
-+ b->out_pos += copy_size;
-+
-+ s->temp.filtered -= copy_size;
-+ s->temp.size -= copy_size;
-+ memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
-+}
-+
-+/*
-+ * The BCJ filter functions are primitive in sense that they process the
-+ * data in chunks of 1-16 bytes. To hide this issue, this function does
-+ * some buffering.
-+ */
-+XZ_EXTERN enum xz_ret INIT xz_dec_bcj_run(struct xz_dec_bcj *s,
-+ struct xz_dec_lzma2 *lzma2,
-+ struct xz_buf *b)
-+{
-+ size_t out_start;
-+
-+ /*
-+ * Flush pending already filtered data to the output buffer. Return
-+ * immediatelly if we couldn't flush everything, or if the next
-+ * filter in the chain had already returned XZ_STREAM_END.
-+ */
-+ if (s->temp.filtered > 0) {
-+ bcj_flush(s, b);
-+ if (s->temp.filtered > 0)
-+ return XZ_OK;
-+
-+ if (s->ret == XZ_STREAM_END)
-+ return XZ_STREAM_END;
-+ }
-+
-+ /*
-+ * If we have more output space than what is currently pending in
-+ * temp, copy the unfiltered data from temp to the output buffer
-+ * and try to fill the output buffer by decoding more data from the
-+ * next filter in the chain. Apply the BCJ filter on the new data
-+ * in the output buffer. If everything cannot be filtered, copy it
-+ * to temp and rewind the output buffer position accordingly.
-+ */
-+ if (s->temp.size < b->out_size - b->out_pos) {
-+ out_start = b->out_pos;
-+ memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
-+ b->out_pos += s->temp.size;
-+
-+ s->ret = xz_dec_lzma2_run(lzma2, b);
-+ if (s->ret != XZ_STREAM_END
-+ && (s->ret != XZ_OK || s->single_call))
-+ return s->ret;
-+
-+ bcj_apply(s, b->out, &out_start, b->out_pos);
-+
-+ /*
-+ * As an exception, if the next filter returned XZ_STREAM_END,
-+ * we can do that too, since the last few bytes that remain
-+ * unfiltered are meant to remain unfiltered.
-+ */
-+ if (s->ret == XZ_STREAM_END)
-+ return XZ_STREAM_END;
-+
-+ s->temp.size = b->out_pos - out_start;
-+ b->out_pos -= s->temp.size;
-+ memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
-+ }
-+
-+ /*
-+ * If we have unfiltered data in temp, try to fill by decoding more
-+ * data from the next filter. Apply the BCJ filter on temp. Then we
-+ * hopefully can fill the actual output buffer by copying filtered
-+ * data from temp. A mix of filtered and unfiltered data may be left
-+ * in temp; it will be taken care on the next call to this function.
-+ */
-+ if (s->temp.size > 0) {
-+ /* Make b->out{,_pos,_size} temporarily point to s->temp. */
-+ s->out = b->out;
-+ s->out_pos = b->out_pos;
-+ s->out_size = b->out_size;
-+ b->out = s->temp.buf;
-+ b->out_pos = s->temp.size;
-+ b->out_size = sizeof(s->temp.buf);
-+
-+ s->ret = xz_dec_lzma2_run(lzma2, b);
-+
-+ s->temp.size = b->out_pos;
-+ b->out = s->out;
-+ b->out_pos = s->out_pos;
-+ b->out_size = s->out_size;
-+
-+ if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
-+ return s->ret;
-+
-+ bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
-+
-+ /*
-+ * If the next filter returned XZ_STREAM_END, we mark that
-+ * everything is filtered, since the last unfiltered bytes
-+ * of the stream are meant to be left as is.
-+ */
-+ if (s->ret == XZ_STREAM_END)
-+ s->temp.filtered = s->temp.size;
-+
-+ bcj_flush(s, b);
-+ if (s->temp.filtered > 0)
-+ return XZ_OK;
-+ }
-+
-+ return s->ret;
-+}
-+
-+XZ_EXTERN struct xz_dec_bcj *INIT xz_dec_bcj_create(bool_t single_call)
-+{
-+ struct xz_dec_bcj *s = malloc(sizeof(*s));
-+ if (s != NULL)
-+ s->single_call = single_call;
-+
-+ return s;
-+}
-+
-+XZ_EXTERN enum xz_ret INIT xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
-+{
-+ switch (id) {
-+#ifdef XZ_DEC_X86
-+ case BCJ_X86:
-+#endif
-+#ifdef XZ_DEC_POWERPC
-+ case BCJ_POWERPC:
-+#endif
-+#ifdef XZ_DEC_IA64
-+ case BCJ_IA64:
-+#endif
-+#ifdef XZ_DEC_ARM
-+ case BCJ_ARM:
-+#endif
-+#ifdef XZ_DEC_ARMTHUMB
-+ case BCJ_ARMTHUMB:
-+#endif
-+#ifdef XZ_DEC_SPARC
-+ case BCJ_SPARC:
-+#endif
-+ break;
-+
-+ default:
-+ /* Unsupported Filter ID */
-+ return XZ_OPTIONS_ERROR;
-+ }
-+
-+ s->type = id;
-+ s->ret = XZ_OK;
-+ s->pos = 0;
-+ s->x86_prev_mask = 0;
-+ s->temp.filtered = 0;
-+ s->temp.size = 0;
-+
-+ return XZ_OK;
-+}
-+
-+#endif
-diff --git a/xen/common/xz/dec_lzma2.c b/xen/common/xz/dec_lzma2.c
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/dec_lzma2.c
-@@ -0,0 +1,1171 @@
-+/*
-+ * LZMA2 decoder
-+ *
-+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
-+ * Igor Pavlov <http://7-zip.org/>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#include "private.h"
-+#include "lzma2.h"
-+
-+/*
-+ * Range decoder initialization eats the first five bytes of each LZMA chunk.
-+ */
-+#define RC_INIT_BYTES 5
-+
-+/*
-+ * Minimum number of usable input buffer to safely decode one LZMA symbol.
-+ * The worst case is that we decode 22 bits using probabilities and 26
-+ * direct bits. This may decode at maximum of 20 bytes of input. However,
-+ * lzma_main() does an extra normalization before returning, thus we
-+ * need to put 21 here.
-+ */
-+#define LZMA_IN_REQUIRED 21
-+
-+/*
-+ * Dictionary (history buffer)
-+ *
-+ * These are always true:
-+ * start <= pos <= full <= end
-+ * pos <= limit <= end
-+ *
-+ * In multi-call mode, also these are true:
-+ * end == size
-+ * size <= size_max
-+ * allocated <= size
-+ *
-+ * Most of these variables are size_t to support single-call mode,
-+ * in which the dictionary variables address the actual output
-+ * buffer directly.
-+ */
-+struct dictionary {
-+ /* Beginning of the history buffer */
-+ uint8_t *buf;
-+
-+ /* Old position in buf (before decoding more data) */
-+ size_t start;
-+
-+ /* Position in buf */
-+ size_t pos;
-+
-+ /*
-+ * How full dictionary is. This is used to detect corrupt input that
-+ * would read beyond the beginning of the uncompressed stream.
-+ */
-+ size_t full;
-+
-+ /* Write limit; we don't write to buf[limit] or later bytes. */
-+ size_t limit;
-+
-+ /*
-+ * End of the dictionary buffer. In multi-call mode, this is
-+ * the same as the dictionary size. In single-call mode, this
-+ * indicates the size of the output buffer.
-+ */
-+ size_t end;
-+
-+ /*
-+ * Size of the dictionary as specified in Block Header. This is used
-+ * together with "full" to detect corrupt input that would make us
-+ * read beyond the beginning of the uncompressed stream.
-+ */
-+ uint32_t size;
-+
-+ /*
-+ * Maximum allowed dictionary size in multi-call mode.
-+ * This is ignored in single-call mode.
-+ */
-+ uint32_t size_max;
-+
-+ /*
-+ * Amount of memory currently allocated for the dictionary.
-+ * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
-+ * size_max is always the same as the allocated size.)
-+ */
-+ uint32_t allocated;
-+
-+ /* Operation mode */
-+ enum xz_mode mode;
-+};
-+
-+/* Range decoder */
-+struct rc_dec {
-+ uint32_t range;
-+ uint32_t code;
-+
-+ /*
-+ * Number of initializing bytes remaining to be read
-+ * by rc_read_init().
-+ */
-+ uint32_t init_bytes_left;
-+
-+ /*
-+ * Buffer from which we read our input. It can be either
-+ * temp.buf or the caller-provided input buffer.
-+ */
-+ const uint8_t *in;
-+ size_t in_pos;
-+ size_t in_limit;
-+};
-+
-+/* Probabilities for a length decoder. */
-+struct lzma_len_dec {
-+ /* Probability of match length being at least 10 */
-+ uint16_t choice;
-+
-+ /* Probability of match length being at least 18 */
-+ uint16_t choice2;
-+
-+ /* Probabilities for match lengths 2-9 */
-+ uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
-+
-+ /* Probabilities for match lengths 10-17 */
-+ uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
-+
-+ /* Probabilities for match lengths 18-273 */
-+ uint16_t high[LEN_HIGH_SYMBOLS];
-+};
-+
-+struct lzma_dec {
-+ /* Distances of latest four matches */
-+ uint32_t rep0;
-+ uint32_t rep1;
-+ uint32_t rep2;
-+ uint32_t rep3;
-+
-+ /* Types of the most recently seen LZMA symbols */
-+ enum lzma_state state;
-+
-+ /*
-+ * Length of a match. This is updated so that dict_repeat can
-+ * be called again to finish repeating the whole match.
-+ */
-+ uint32_t len;
-+
-+ /*
-+ * LZMA properties or related bit masks (number of literal
-+ * context bits, a mask dervied from the number of literal
-+ * position bits, and a mask dervied from the number
-+ * position bits)
-+ */
-+ uint32_t lc;
-+ uint32_t literal_pos_mask; /* (1 << lp) - 1 */
-+ uint32_t pos_mask; /* (1 << pb) - 1 */
-+
-+ /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
-+ uint16_t is_match[STATES][POS_STATES_MAX];
-+
-+ /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
-+ uint16_t is_rep[STATES];
-+
-+ /*
-+ * If 0, distance of a repeated match is rep0.
-+ * Otherwise check is_rep1.
-+ */
-+ uint16_t is_rep0[STATES];
-+
-+ /*
-+ * If 0, distance of a repeated match is rep1.
-+ * Otherwise check is_rep2.
-+ */
-+ uint16_t is_rep1[STATES];
-+
-+ /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
-+ uint16_t is_rep2[STATES];
-+
-+ /*
-+ * If 1, the repeated match has length of one byte. Otherwise
-+ * the length is decoded from rep_len_decoder.
-+ */
-+ uint16_t is_rep0_long[STATES][POS_STATES_MAX];
-+
-+ /*
-+ * Probability tree for the highest two bits of the match
-+ * distance. There is a separate probability tree for match
-+ * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
-+ */
-+ uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
-+
-+ /*
-+ * Probility trees for additional bits for match distance
-+ * when the distance is in the range [4, 127].
-+ */
-+ uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
-+
-+ /*
-+ * Probability tree for the lowest four bits of a match
-+ * distance that is equal to or greater than 128.
-+ */
-+ uint16_t dist_align[ALIGN_SIZE];
-+
-+ /* Length of a normal match */
-+ struct lzma_len_dec match_len_dec;
-+
-+ /* Length of a repeated match */
-+ struct lzma_len_dec rep_len_dec;
-+
-+ /* Probabilities of literals */
-+ uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
-+};
-+
-+struct lzma2_dec {
-+ /* Position in xz_dec_lzma2_run(). */
-+ enum lzma2_seq {
-+ SEQ_CONTROL,
-+ SEQ_UNCOMPRESSED_1,
-+ SEQ_UNCOMPRESSED_2,
-+ SEQ_COMPRESSED_0,
-+ SEQ_COMPRESSED_1,
-+ SEQ_PROPERTIES,
-+ SEQ_LZMA_PREPARE,
-+ SEQ_LZMA_RUN,
-+ SEQ_COPY
-+ } sequence;
-+
-+ /* Next position after decoding the compressed size of the chunk. */
-+ enum lzma2_seq next_sequence;
-+
-+ /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
-+ uint32_t uncompressed;
-+
-+ /*
-+ * Compressed size of LZMA chunk or compressed/uncompressed
-+ * size of uncompressed chunk (64 KiB at maximum)
-+ */
-+ uint32_t compressed;
-+
-+ /*
-+ * True if dictionary reset is needed. This is false before
-+ * the first chunk (LZMA or uncompressed).
-+ */
-+ bool_t need_dict_reset;
-+
-+ /*
-+ * True if new LZMA properties are needed. This is false
-+ * before the first LZMA chunk.
-+ */
-+ bool_t need_props;
-+};
-+
-+struct xz_dec_lzma2 {
-+ /*
-+ * The order below is important on x86 to reduce code size and
-+ * it shouldn't hurt on other platforms. Everything up to and
-+ * including lzma.pos_mask are in the first 128 bytes on x86-32,
-+ * which allows using smaller instructions to access those
-+ * variables. On x86-64, fewer variables fit into the first 128
-+ * bytes, but this is still the best order without sacrificing
-+ * the readability by splitting the structures.
-+ */
-+ struct rc_dec rc;
-+ struct dictionary dict;
-+ struct lzma2_dec lzma2;
-+ struct lzma_dec lzma;
-+
-+ /*
-+ * Temporary buffer which holds small number of input bytes between
-+ * decoder calls. See lzma2_lzma() for details.
-+ */
-+ struct {
-+ uint32_t size;
-+ uint8_t buf[3 * LZMA_IN_REQUIRED];
-+ } temp;
-+};
-+
-+/**************
-+ * Dictionary *
-+ **************/
-+
-+/*
-+ * Reset the dictionary state. When in single-call mode, set up the beginning
-+ * of the dictionary to point to the actual output buffer.
-+ */
-+static void INIT dict_reset(struct dictionary *dict, struct xz_buf *b)
-+{
-+ if (DEC_IS_SINGLE(dict->mode)) {
-+ dict->buf = b->out + b->out_pos;
-+ dict->end = b->out_size - b->out_pos;
-+ }
-+
-+ dict->start = 0;
-+ dict->pos = 0;
-+ dict->limit = 0;
-+ dict->full = 0;
-+}
-+
-+/* Set dictionary write limit */
-+static void INIT dict_limit(struct dictionary *dict, size_t out_max)
-+{
-+ if (dict->end - dict->pos <= out_max)
-+ dict->limit = dict->end;
-+ else
-+ dict->limit = dict->pos + out_max;
-+}
-+
-+/* Return true if at least one byte can be written into the dictionary. */
-+static inline bool_t INIT dict_has_space(const struct dictionary *dict)
-+{
-+ return dict->pos < dict->limit;
-+}
-+
-+/*
-+ * Get a byte from the dictionary at the given distance. The distance is
-+ * assumed to valid, or as a special case, zero when the dictionary is
-+ * still empty. This special case is needed for single-call decoding to
-+ * avoid writing a '\0' to the end of the destination buffer.
-+ */
-+static inline uint32_t INIT dict_get(const struct dictionary *dict, uint32_t dist)
-+{
-+ size_t offset = dict->pos - dist - 1;
-+
-+ if (dist >= dict->pos)
-+ offset += dict->end;
-+
-+ return dict->full > 0 ? dict->buf[offset] : 0;
-+}
-+
-+/*
-+ * Put one byte into the dictionary. It is assumed that there is space for it.
-+ */
-+static inline void INIT dict_put(struct dictionary *dict, uint8_t byte)
-+{
-+ dict->buf[dict->pos++] = byte;
-+
-+ if (dict->full < dict->pos)
-+ dict->full = dict->pos;
-+}
-+
-+/*
-+ * Repeat given number of bytes from the given distance. If the distance is
-+ * invalid, false is returned. On success, true is returned and *len is
-+ * updated to indicate how many bytes were left to be repeated.
-+ */
-+static bool_t INIT dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
-+{
-+ size_t back;
-+ uint32_t left;
-+
-+ if (dist >= dict->full || dist >= dict->size)
-+ return false;
-+
-+ left = min_t(size_t, dict->limit - dict->pos, *len);
-+ *len -= left;
-+
-+ back = dict->pos - dist - 1;
-+ if (dist >= dict->pos)
-+ back += dict->end;
-+
-+ do {
-+ dict->buf[dict->pos++] = dict->buf[back++];
-+ if (back == dict->end)
-+ back = 0;
-+ } while (--left > 0);
-+
-+ if (dict->full < dict->pos)
-+ dict->full = dict->pos;
-+
-+ return true;
-+}
-+
-+/* Copy uncompressed data as is from input to dictionary and output buffers. */
-+static void INIT dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
-+ uint32_t *left)
-+{
-+ size_t copy_size;
-+
-+ while (*left > 0 && b->in_pos < b->in_size
-+ && b->out_pos < b->out_size) {
-+ copy_size = min(b->in_size - b->in_pos,
-+ b->out_size - b->out_pos);
-+ if (copy_size > dict->end - dict->pos)
-+ copy_size = dict->end - dict->pos;
-+ if (copy_size > *left)
-+ copy_size = *left;
-+
-+ *left -= copy_size;
-+
-+ memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
-+ dict->pos += copy_size;
-+
-+ if (dict->full < dict->pos)
-+ dict->full = dict->pos;
-+
-+ if (DEC_IS_MULTI(dict->mode)) {
-+ if (dict->pos == dict->end)
-+ dict->pos = 0;
-+
-+ memcpy(b->out + b->out_pos, b->in + b->in_pos,
-+ copy_size);
-+ }
-+
-+ dict->start = dict->pos;
-+
-+ b->out_pos += copy_size;
-+ b->in_pos += copy_size;
-+ }
-+}
-+
-+/*
-+ * Flush pending data from dictionary to b->out. It is assumed that there is
-+ * enough space in b->out. This is guaranteed because caller uses dict_limit()
-+ * before decoding data into the dictionary.
-+ */
-+static uint32_t INIT dict_flush(struct dictionary *dict, struct xz_buf *b)
-+{
-+ size_t copy_size = dict->pos - dict->start;
-+
-+ if (DEC_IS_MULTI(dict->mode)) {
-+ if (dict->pos == dict->end)
-+ dict->pos = 0;
-+
-+ memcpy(b->out + b->out_pos, dict->buf + dict->start,
-+ copy_size);
-+ }
-+
-+ dict->start = dict->pos;
-+ b->out_pos += copy_size;
-+ return copy_size;
-+}
-+
-+/*****************
-+ * Range decoder *
-+ *****************/
-+
-+/* Reset the range decoder. */
-+static void INIT rc_reset(struct rc_dec *rc)
-+{
-+ rc->range = (uint32_t)-1;
-+ rc->code = 0;
-+ rc->init_bytes_left = RC_INIT_BYTES;
-+}
-+
-+/*
-+ * Read the first five initial bytes into rc->code if they haven't been
-+ * read already. (Yes, the first byte gets completely ignored.)
-+ */
-+static bool_t INIT rc_read_init(struct rc_dec *rc, struct xz_buf *b)
-+{
-+ while (rc->init_bytes_left > 0) {
-+ if (b->in_pos == b->in_size)
-+ return false;
-+
-+ rc->code = (rc->code << 8) + b->in[b->in_pos++];
-+ --rc->init_bytes_left;
-+ }
-+
-+ return true;
-+}
-+
-+/* Return true if there may not be enough input for the next decoding loop. */
-+static inline bool_t INIT rc_limit_exceeded(const struct rc_dec *rc)
-+{
-+ return rc->in_pos > rc->in_limit;
-+}
-+
-+/*
-+ * Return true if it is possible (from point of view of range decoder) that
-+ * we have reached the end of the LZMA chunk.
-+ */
-+static inline bool_t INIT rc_is_finished(const struct rc_dec *rc)
-+{
-+ return rc->code == 0;
-+}
-+
-+/* Read the next input byte if needed. */
-+static always_inline void rc_normalize(struct rc_dec *rc)
-+{
-+ if (rc->range < RC_TOP_VALUE) {
-+ rc->range <<= RC_SHIFT_BITS;
-+ rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
-+ }
-+}
-+
-+/*
-+ * Decode one bit. In some versions, this function has been splitted in three
-+ * functions so that the compiler is supposed to be able to more easily avoid
-+ * an extra branch. In this particular version of the LZMA decoder, this
-+ * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
-+ * on x86). Using a non-splitted version results in nicer looking code too.
-+ *
-+ * NOTE: This must return an int. Do not make it return a bool or the speed
-+ * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
-+ * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
-+ */
-+static always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
-+{
-+ uint32_t bound;
-+ int bit;
-+
-+ rc_normalize(rc);
-+ bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
-+ if (rc->code < bound) {
-+ rc->range = bound;
-+ *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
-+ bit = 0;
-+ } else {
-+ rc->range -= bound;
-+ rc->code -= bound;
-+ *prob -= *prob >> RC_MOVE_BITS;
-+ bit = 1;
-+ }
-+
-+ return bit;
-+}
-+
-+/* Decode a bittree starting from the most significant bit. */
-+static always_inline uint32_t rc_bittree(struct rc_dec *rc,
-+ uint16_t *probs, uint32_t limit)
-+{
-+ uint32_t symbol = 1;
-+
-+ do {
-+ if (rc_bit(rc, &probs[symbol]))
-+ symbol = (symbol << 1) + 1;
-+ else
-+ symbol <<= 1;
-+ } while (symbol < limit);
-+
-+ return symbol;
-+}
-+
-+/* Decode a bittree starting from the least significant bit. */
-+static always_inline void rc_bittree_reverse(struct rc_dec *rc,
-+ uint16_t *probs,
-+ uint32_t *dest, uint32_t limit)
-+{
-+ uint32_t symbol = 1;
-+ uint32_t i = 0;
-+
-+ do {
-+ if (rc_bit(rc, &probs[symbol])) {
-+ symbol = (symbol << 1) + 1;
-+ *dest += 1 << i;
-+ } else {
-+ symbol <<= 1;
-+ }
-+ } while (++i < limit);
-+}
-+
-+/* Decode direct bits (fixed fifty-fifty probability) */
-+static inline void INIT rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
-+{
-+ uint32_t mask;
-+
-+ do {
-+ rc_normalize(rc);
-+ rc->range >>= 1;
-+ rc->code -= rc->range;
-+ mask = (uint32_t)0 - (rc->code >> 31);
-+ rc->code += rc->range & mask;
-+ *dest = (*dest << 1) + (mask + 1);
-+ } while (--limit > 0);
-+}
-+
-+/********
-+ * LZMA *
-+ ********/
-+
-+/* Get pointer to literal coder probability array. */
-+static uint16_t *INIT lzma_literal_probs(struct xz_dec_lzma2 *s)
-+{
-+ uint32_t prev_byte = dict_get(&s->dict, 0);
-+ uint32_t low = prev_byte >> (8 - s->lzma.lc);
-+ uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
-+ return s->lzma.literal[low + high];
-+}
-+
-+/* Decode a literal (one 8-bit byte) */
-+static void INIT lzma_literal(struct xz_dec_lzma2 *s)
-+{
-+ uint16_t *probs;
-+ uint32_t symbol;
-+ uint32_t match_byte;
-+ uint32_t match_bit;
-+ uint32_t offset;
-+ uint32_t i;
-+
-+ probs = lzma_literal_probs(s);
-+
-+ if (lzma_state_is_literal(s->lzma.state)) {
-+ symbol = rc_bittree(&s->rc, probs, 0x100);
-+ } else {
-+ symbol = 1;
-+ match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
-+ offset = 0x100;
-+
-+ do {
-+ match_bit = match_byte & offset;
-+ match_byte <<= 1;
-+ i = offset + match_bit + symbol;
-+
-+ if (rc_bit(&s->rc, &probs[i])) {
-+ symbol = (symbol << 1) + 1;
-+ offset &= match_bit;
-+ } else {
-+ symbol <<= 1;
-+ offset &= ~match_bit;
-+ }
-+ } while (symbol < 0x100);
-+ }
-+
-+ dict_put(&s->dict, (uint8_t)symbol);
-+ lzma_state_literal(&s->lzma.state);
-+}
-+
-+/* Decode the length of the match into s->lzma.len. */
-+static void INIT lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
-+ uint32_t pos_state)
-+{
-+ uint16_t *probs;
-+ uint32_t limit;
-+
-+ if (!rc_bit(&s->rc, &l->choice)) {
-+ probs = l->low[pos_state];
-+ limit = LEN_LOW_SYMBOLS;
-+ s->lzma.len = MATCH_LEN_MIN;
-+ } else {
-+ if (!rc_bit(&s->rc, &l->choice2)) {
-+ probs = l->mid[pos_state];
-+ limit = LEN_MID_SYMBOLS;
-+ s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
-+ } else {
-+ probs = l->high;
-+ limit = LEN_HIGH_SYMBOLS;
-+ s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
-+ + LEN_MID_SYMBOLS;
-+ }
-+ }
-+
-+ s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
-+}
-+
-+/* Decode a match. The distance will be stored in s->lzma.rep0. */
-+static void INIT lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
-+{
-+ uint16_t *probs;
-+ uint32_t dist_slot;
-+ uint32_t limit;
-+
-+ lzma_state_match(&s->lzma.state);
-+
-+ s->lzma.rep3 = s->lzma.rep2;
-+ s->lzma.rep2 = s->lzma.rep1;
-+ s->lzma.rep1 = s->lzma.rep0;
-+
-+ lzma_len(s, &s->lzma.match_len_dec, pos_state);
-+
-+ probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
-+ dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
-+
-+ if (dist_slot < DIST_MODEL_START) {
-+ s->lzma.rep0 = dist_slot;
-+ } else {
-+ limit = (dist_slot >> 1) - 1;
-+ s->lzma.rep0 = 2 + (dist_slot & 1);
-+
-+ if (dist_slot < DIST_MODEL_END) {
-+ s->lzma.rep0 <<= limit;
-+ probs = s->lzma.dist_special + s->lzma.rep0
-+ - dist_slot - 1;
-+ rc_bittree_reverse(&s->rc, probs,
-+ &s->lzma.rep0, limit);
-+ } else {
-+ rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
-+ s->lzma.rep0 <<= ALIGN_BITS;
-+ rc_bittree_reverse(&s->rc, s->lzma.dist_align,
-+ &s->lzma.rep0, ALIGN_BITS);
-+ }
-+ }
-+}
-+
-+/*
-+ * Decode a repeated match. The distance is one of the four most recently
-+ * seen matches. The distance will be stored in s->lzma.rep0.
-+ */
-+static void INIT lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
-+{
-+ uint32_t tmp;
-+
-+ if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
-+ if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
-+ s->lzma.state][pos_state])) {
-+ lzma_state_short_rep(&s->lzma.state);
-+ s->lzma.len = 1;
-+ return;
-+ }
-+ } else {
-+ if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
-+ tmp = s->lzma.rep1;
-+ } else {
-+ if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
-+ tmp = s->lzma.rep2;
-+ } else {
-+ tmp = s->lzma.rep3;
-+ s->lzma.rep3 = s->lzma.rep2;
-+ }
-+
-+ s->lzma.rep2 = s->lzma.rep1;
-+ }
-+
-+ s->lzma.rep1 = s->lzma.rep0;
-+ s->lzma.rep0 = tmp;
-+ }
-+
-+ lzma_state_long_rep(&s->lzma.state);
-+ lzma_len(s, &s->lzma.rep_len_dec, pos_state);
-+}
-+
-+/* LZMA decoder core */
-+static bool_t INIT lzma_main(struct xz_dec_lzma2 *s)
-+{
-+ uint32_t pos_state;
-+
-+ /*
-+ * If the dictionary was reached during the previous call, try to
-+ * finish the possibly pending repeat in the dictionary.
-+ */
-+ if (dict_has_space(&s->dict) && s->lzma.len > 0)
-+ dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
-+
-+ /*
-+ * Decode more LZMA symbols. One iteration may consume up to
-+ * LZMA_IN_REQUIRED - 1 bytes.
-+ */
-+ while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
-+ pos_state = s->dict.pos & s->lzma.pos_mask;
-+
-+ if (!rc_bit(&s->rc, &s->lzma.is_match[
-+ s->lzma.state][pos_state])) {
-+ lzma_literal(s);
-+ } else {
-+ if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
-+ lzma_rep_match(s, pos_state);
-+ else
-+ lzma_match(s, pos_state);
-+
-+ if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
-+ return false;
-+ }
-+ }
-+
-+ /*
-+ * Having the range decoder always normalized when we are outside
-+ * this function makes it easier to correctly handle end of the chunk.
-+ */
-+ rc_normalize(&s->rc);
-+
-+ return true;
-+}
-+
-+/*
-+ * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
-+ * here, because LZMA state may be reset without resetting the dictionary.
-+ */
-+static void INIT lzma_reset(struct xz_dec_lzma2 *s)
-+{
-+ uint16_t *probs;
-+ size_t i;
-+
-+ s->lzma.state = STATE_LIT_LIT;
-+ s->lzma.rep0 = 0;
-+ s->lzma.rep1 = 0;
-+ s->lzma.rep2 = 0;
-+ s->lzma.rep3 = 0;
-+
-+ /*
-+ * All probabilities are initialized to the same value. This hack
-+ * makes the code smaller by avoiding a separate loop for each
-+ * probability array.
-+ *
-+ * This could be optimized so that only that part of literal
-+ * probabilities that are actually required. In the common case
-+ * we would write 12 KiB less.
-+ */
-+ probs = s->lzma.is_match[0];
-+ for (i = 0; i < PROBS_TOTAL; ++i)
-+ probs[i] = RC_BIT_MODEL_TOTAL / 2;
-+
-+ rc_reset(&s->rc);
-+}
-+
-+/*
-+ * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
-+ * from the decoded lp and pb values. On success, the LZMA decoder state is
-+ * reset and true is returned.
-+ */
-+static bool_t INIT lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
-+{
-+ if (props > (4 * 5 + 4) * 9 + 8)
-+ return false;
-+
-+ s->lzma.pos_mask = 0;
-+ while (props >= 9 * 5) {
-+ props -= 9 * 5;
-+ ++s->lzma.pos_mask;
-+ }
-+
-+ s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
-+
-+ s->lzma.literal_pos_mask = 0;
-+ while (props >= 9) {
-+ props -= 9;
-+ ++s->lzma.literal_pos_mask;
-+ }
-+
-+ s->lzma.lc = props;
-+
-+ if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
-+ return false;
-+
-+ s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
-+
-+ lzma_reset(s);
-+
-+ return true;
-+}
-+
-+/*********
-+ * LZMA2 *
-+ *********/
-+
-+/*
-+ * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
-+ * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
-+ * wrapper function takes care of making the LZMA decoder's assumption safe.
-+ *
-+ * As long as there is plenty of input left to be decoded in the current LZMA
-+ * chunk, we decode directly from the caller-supplied input buffer until
-+ * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
-+ * s->temp.buf, which (hopefully) gets filled on the next call to this
-+ * function. We decode a few bytes from the temporary buffer so that we can
-+ * continue decoding from the caller-supplied input buffer again.
-+ */
-+static bool_t INIT lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
-+{
-+ size_t in_avail;
-+ uint32_t tmp;
-+
-+ in_avail = b->in_size - b->in_pos;
-+ if (s->temp.size > 0 || s->lzma2.compressed == 0) {
-+ tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
-+ if (tmp > s->lzma2.compressed - s->temp.size)
-+ tmp = s->lzma2.compressed - s->temp.size;
-+ if (tmp > in_avail)
-+ tmp = in_avail;
-+
-+ memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
-+
-+ if (s->temp.size + tmp == s->lzma2.compressed) {
-+ memzero(s->temp.buf + s->temp.size + tmp,
-+ sizeof(s->temp.buf)
-+ - s->temp.size - tmp);
-+ s->rc.in_limit = s->temp.size + tmp;
-+ } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
-+ s->temp.size += tmp;
-+ b->in_pos += tmp;
-+ return true;
-+ } else {
-+ s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
-+ }
-+
-+ s->rc.in = s->temp.buf;
-+ s->rc.in_pos = 0;
-+
-+ if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
-+ return false;
-+
-+ s->lzma2.compressed -= s->rc.in_pos;
-+
-+ if (s->rc.in_pos < s->temp.size) {
-+ s->temp.size -= s->rc.in_pos;
-+ memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
-+ s->temp.size);
-+ return true;
-+ }
-+
-+ b->in_pos += s->rc.in_pos - s->temp.size;
-+ s->temp.size = 0;
-+ }
-+
-+ in_avail = b->in_size - b->in_pos;
-+ if (in_avail >= LZMA_IN_REQUIRED) {
-+ s->rc.in = b->in;
-+ s->rc.in_pos = b->in_pos;
-+
-+ if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
-+ s->rc.in_limit = b->in_pos + s->lzma2.compressed;
-+ else
-+ s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
-+
-+ if (!lzma_main(s))
-+ return false;
-+
-+ in_avail = s->rc.in_pos - b->in_pos;
-+ if (in_avail > s->lzma2.compressed)
-+ return false;
-+
-+ s->lzma2.compressed -= in_avail;
-+ b->in_pos = s->rc.in_pos;
-+ }
-+
-+ in_avail = b->in_size - b->in_pos;
-+ if (in_avail < LZMA_IN_REQUIRED) {
-+ if (in_avail > s->lzma2.compressed)
-+ in_avail = s->lzma2.compressed;
-+
-+ memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
-+ s->temp.size = in_avail;
-+ b->in_pos += in_avail;
-+ }
-+
-+ return true;
-+}
-+
-+/*
-+ * Take care of the LZMA2 control layer, and forward the job of actual LZMA
-+ * decoding or copying of uncompressed chunks to other functions.
-+ */
-+XZ_EXTERN enum xz_ret INIT xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-+ struct xz_buf *b)
-+{
-+ uint32_t tmp;
-+
-+ while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
-+ switch (s->lzma2.sequence) {
-+ case SEQ_CONTROL:
-+ /*
-+ * LZMA2 control byte
-+ *
-+ * Exact values:
-+ * 0x00 End marker
-+ * 0x01 Dictionary reset followed by
-+ * an uncompressed chunk
-+ * 0x02 Uncompressed chunk (no dictionary reset)
-+ *
-+ * Highest three bits (s->control & 0xE0):
-+ * 0xE0 Dictionary reset, new properties and state
-+ * reset, followed by LZMA compressed chunk
-+ * 0xC0 New properties and state reset, followed
-+ * by LZMA compressed chunk (no dictionary
-+ * reset)
-+ * 0xA0 State reset using old properties,
-+ * followed by LZMA compressed chunk (no
-+ * dictionary reset)
-+ * 0x80 LZMA chunk (no dictionary or state reset)
-+ *
-+ * For LZMA compressed chunks, the lowest five bits
-+ * (s->control & 1F) are the highest bits of the
-+ * uncompressed size (bits 16-20).
-+ *
-+ * A new LZMA2 stream must begin with a dictionary
-+ * reset. The first LZMA chunk must set new
-+ * properties and reset the LZMA state.
-+ *
-+ * Values that don't match anything described above
-+ * are invalid and we return XZ_DATA_ERROR.
-+ */
-+ tmp = b->in[b->in_pos++];
-+
-+ if (tmp >= 0xE0 || tmp == 0x01) {
-+ s->lzma2.need_props = true;
-+ s->lzma2.need_dict_reset = false;
-+ dict_reset(&s->dict, b);
-+ } else if (s->lzma2.need_dict_reset) {
-+ return XZ_DATA_ERROR;
-+ }
-+
-+ if (tmp >= 0x80) {
-+ s->lzma2.uncompressed = (tmp & 0x1F) << 16;
-+ s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
-+
-+ if (tmp >= 0xC0) {
-+ /*
-+ * When there are new properties,
-+ * state reset is done at
-+ * SEQ_PROPERTIES.
-+ */
-+ s->lzma2.need_props = false;
-+ s->lzma2.next_sequence
-+ = SEQ_PROPERTIES;
-+
-+ } else if (s->lzma2.need_props) {
-+ return XZ_DATA_ERROR;
-+
-+ } else {
-+ s->lzma2.next_sequence
-+ = SEQ_LZMA_PREPARE;
-+ if (tmp >= 0xA0)
-+ lzma_reset(s);
-+ }
-+ } else {
-+ if (tmp == 0x00)
-+ return XZ_STREAM_END;
-+
-+ if (tmp > 0x02)
-+ return XZ_DATA_ERROR;
-+
-+ s->lzma2.sequence = SEQ_COMPRESSED_0;
-+ s->lzma2.next_sequence = SEQ_COPY;
-+ }
-+
-+ break;
-+
-+ case SEQ_UNCOMPRESSED_1:
-+ s->lzma2.uncompressed
-+ += (uint32_t)b->in[b->in_pos++] << 8;
-+ s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
-+ break;
-+
-+ case SEQ_UNCOMPRESSED_2:
-+ s->lzma2.uncompressed
-+ += (uint32_t)b->in[b->in_pos++] + 1;
-+ s->lzma2.sequence = SEQ_COMPRESSED_0;
-+ break;
-+
-+ case SEQ_COMPRESSED_0:
-+ s->lzma2.compressed
-+ = (uint32_t)b->in[b->in_pos++] << 8;
-+ s->lzma2.sequence = SEQ_COMPRESSED_1;
-+ break;
-+
-+ case SEQ_COMPRESSED_1:
-+ s->lzma2.compressed
-+ += (uint32_t)b->in[b->in_pos++] + 1;
-+ s->lzma2.sequence = s->lzma2.next_sequence;
-+ break;
-+
-+ case SEQ_PROPERTIES:
-+ if (!lzma_props(s, b->in[b->in_pos++]))
-+ return XZ_DATA_ERROR;
-+
-+ s->lzma2.sequence = SEQ_LZMA_PREPARE;
-+
-+ case SEQ_LZMA_PREPARE:
-+ if (s->lzma2.compressed < RC_INIT_BYTES)
-+ return XZ_DATA_ERROR;
-+
-+ if (!rc_read_init(&s->rc, b))
-+ return XZ_OK;
-+
-+ s->lzma2.compressed -= RC_INIT_BYTES;
-+ s->lzma2.sequence = SEQ_LZMA_RUN;
-+
-+ case SEQ_LZMA_RUN:
-+ /*
-+ * Set dictionary limit to indicate how much we want
-+ * to be encoded at maximum. Decode new data into the
-+ * dictionary. Flush the new data from dictionary to
-+ * b->out. Check if we finished decoding this chunk.
-+ * In case the dictionary got full but we didn't fill
-+ * the output buffer yet, we may run this loop
-+ * multiple times without changing s->lzma2.sequence.
-+ */
-+ dict_limit(&s->dict, min_t(size_t,
-+ b->out_size - b->out_pos,
-+ s->lzma2.uncompressed));
-+ if (!lzma2_lzma(s, b))
-+ return XZ_DATA_ERROR;
-+
-+ s->lzma2.uncompressed -= dict_flush(&s->dict, b);
-+
-+ if (s->lzma2.uncompressed == 0) {
-+ if (s->lzma2.compressed > 0 || s->lzma.len > 0
-+ || !rc_is_finished(&s->rc))
-+ return XZ_DATA_ERROR;
-+
-+ rc_reset(&s->rc);
-+ s->lzma2.sequence = SEQ_CONTROL;
-+
-+ } else if (b->out_pos == b->out_size
-+ || (b->in_pos == b->in_size
-+ && s->temp.size
-+ < s->lzma2.compressed)) {
-+ return XZ_OK;
-+ }
-+
-+ break;
-+
-+ case SEQ_COPY:
-+ dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
-+ if (s->lzma2.compressed > 0)
-+ return XZ_OK;
-+
-+ s->lzma2.sequence = SEQ_CONTROL;
-+ break;
-+ }
-+ }
-+
-+ return XZ_OK;
-+}
-+
-+XZ_EXTERN struct xz_dec_lzma2 *INIT xz_dec_lzma2_create(enum xz_mode mode,
-+ uint32_t dict_max)
-+{
-+ struct xz_dec_lzma2 *s = malloc(sizeof(*s));
-+ if (s == NULL)
-+ return NULL;
-+
-+ s->dict.mode = mode;
-+ s->dict.size_max = dict_max;
-+
-+ if (DEC_IS_PREALLOC(mode)) {
-+ s->dict.buf = large_malloc(dict_max);
-+ if (s->dict.buf == NULL) {
-+ free(s);
-+ return NULL;
-+ }
-+ } else if (DEC_IS_DYNALLOC(mode)) {
-+ s->dict.buf = NULL;
-+ s->dict.allocated = 0;
-+ }
-+
-+ return s;
-+}
-+
-+XZ_EXTERN enum xz_ret INIT xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
-+{
-+ /* This limits dictionary size to 3 GiB to keep parsing simpler. */
-+ if (props > 39)
-+ return XZ_OPTIONS_ERROR;
-+
-+ s->dict.size = 2 + (props & 1);
-+ s->dict.size <<= (props >> 1) + 11;
-+
-+ if (DEC_IS_MULTI(s->dict.mode)) {
-+ if (s->dict.size > s->dict.size_max)
-+ return XZ_MEMLIMIT_ERROR;
-+
-+ s->dict.end = s->dict.size;
-+
-+ if (DEC_IS_DYNALLOC(s->dict.mode)) {
-+ if (s->dict.allocated < s->dict.size) {
-+ large_free(s->dict.buf);
-+ s->dict.buf = large_malloc(s->dict.size);
-+ if (s->dict.buf == NULL) {
-+ s->dict.allocated = 0;
-+ return XZ_MEM_ERROR;
-+ }
-+ }
-+ }
-+ }
-+
-+ s->lzma.len = 0;
-+
-+ s->lzma2.sequence = SEQ_CONTROL;
-+ s->lzma2.need_dict_reset = true;
-+
-+ s->temp.size = 0;
-+
-+ return XZ_OK;
-+}
-+
-+XZ_EXTERN void INIT xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
-+{
-+ if (DEC_IS_MULTI(s->dict.mode))
-+ large_free(s->dict.buf);
-+
-+ free(s);
-+}
-diff --git a/xen/common/xz/dec_stream.c b/xen/common/xz/dec_stream.c
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/dec_stream.c
-@@ -0,0 +1,821 @@
-+/*
-+ * .xz Stream decoder
-+ *
-+ * Author: Lasse Collin <lasse.collin@tukaani.org>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#include "private.h"
-+#include "stream.h"
-+
-+/* Hash used to validate the Index field */
-+struct xz_dec_hash {
-+ vli_type unpadded;
-+ vli_type uncompressed;
-+ uint32_t crc32;
-+};
-+
-+struct xz_dec {
-+ /* Position in dec_main() */
-+ enum {
-+ SEQ_STREAM_HEADER,
-+ SEQ_BLOCK_START,
-+ SEQ_BLOCK_HEADER,
-+ SEQ_BLOCK_UNCOMPRESS,
-+ SEQ_BLOCK_PADDING,
-+ SEQ_BLOCK_CHECK,
-+ SEQ_INDEX,
-+ SEQ_INDEX_PADDING,
-+ SEQ_INDEX_CRC32,
-+ SEQ_STREAM_FOOTER
-+ } sequence;
-+
-+ /* Position in variable-length integers and Check fields */
-+ uint32_t pos;
-+
-+ /* Variable-length integer decoded by dec_vli() */
-+ vli_type vli;
-+
-+ /* Saved in_pos and out_pos */
-+ size_t in_start;
-+ size_t out_start;
-+
-+ /* CRC32 value in Block or Index */
-+ uint32_t crc32;
-+
-+ /* Type of the integrity check calculated from uncompressed data */
-+ enum xz_check check_type;
-+
-+ /* Operation mode */
-+ enum xz_mode mode;
-+
-+ /*
-+ * True if the next call to xz_dec_run() is allowed to return
-+ * XZ_BUF_ERROR.
-+ */
-+ bool_t allow_buf_error;
-+
-+ /* Information stored in Block Header */
-+ struct {
-+ /*
-+ * Value stored in the Compressed Size field, or
-+ * VLI_UNKNOWN if Compressed Size is not present.
-+ */
-+ vli_type compressed;
-+
-+ /*
-+ * Value stored in the Uncompressed Size field, or
-+ * VLI_UNKNOWN if Uncompressed Size is not present.
-+ */
-+ vli_type uncompressed;
-+
-+ /* Size of the Block Header field */
-+ uint32_t size;
-+ } block_header;
-+
-+ /* Information collected when decoding Blocks */
-+ struct {
-+ /* Observed compressed size of the current Block */
-+ vli_type compressed;
-+
-+ /* Observed uncompressed size of the current Block */
-+ vli_type uncompressed;
-+
-+ /* Number of Blocks decoded so far */
-+ vli_type count;
-+
-+ /*
-+ * Hash calculated from the Block sizes. This is used to
-+ * validate the Index field.
-+ */
-+ struct xz_dec_hash hash;
-+ } block;
-+
-+ /* Variables needed when verifying the Index field */
-+ struct {
-+ /* Position in dec_index() */
-+ enum {
-+ SEQ_INDEX_COUNT,
-+ SEQ_INDEX_UNPADDED,
-+ SEQ_INDEX_UNCOMPRESSED
-+ } sequence;
-+
-+ /* Size of the Index in bytes */
-+ vli_type size;
-+
-+ /* Number of Records (matches block.count in valid files) */
-+ vli_type count;
-+
-+ /*
-+ * Hash calculated from the Records (matches block.hash in
-+ * valid files).
-+ */
-+ struct xz_dec_hash hash;
-+ } index;
-+
-+ /*
-+ * Temporary buffer needed to hold Stream Header, Block Header,
-+ * and Stream Footer. The Block Header is the biggest (1 KiB)
-+ * so we reserve space according to that. buf[] has to be aligned
-+ * to a multiple of four bytes; the size_t variables before it
-+ * should guarantee this.
-+ */
-+ struct {
-+ size_t pos;
-+ size_t size;
-+ uint8_t buf[1024];
-+ } temp;
-+
-+ struct xz_dec_lzma2 *lzma2;
-+
-+#ifdef XZ_DEC_BCJ
-+ struct xz_dec_bcj *bcj;
-+ bool_t bcj_active;
-+#endif
-+};
-+
-+#ifdef XZ_DEC_ANY_CHECK
-+/* Sizes of the Check field with different Check IDs */
-+static const uint8_t check_sizes[16] = {
-+ 0,
-+ 4, 4, 4,
-+ 8, 8, 8,
-+ 16, 16, 16,
-+ 32, 32, 32,
-+ 64, 64, 64
-+};
-+#endif
-+
-+/*
-+ * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller
-+ * must have set s->temp.pos to indicate how much data we are supposed
-+ * to copy into s->temp.buf. Return true once s->temp.pos has reached
-+ * s->temp.size.
-+ */
-+static bool_t INIT fill_temp(struct xz_dec *s, struct xz_buf *b)
-+{
-+ size_t copy_size = min_t(size_t,
-+ b->in_size - b->in_pos, s->temp.size - s->temp.pos);
-+
-+ memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size);
-+ b->in_pos += copy_size;
-+ s->temp.pos += copy_size;
-+
-+ if (s->temp.pos == s->temp.size) {
-+ s->temp.pos = 0;
-+ return true;
-+ }
-+
-+ return false;
-+}
-+
-+/* Decode a variable-length integer (little-endian base-128 encoding) */
-+static enum xz_ret INIT dec_vli(struct xz_dec *s, const uint8_t *in,
-+ size_t *in_pos, size_t in_size)
-+{
-+ uint8_t byte;
-+
-+ if (s->pos == 0)
-+ s->vli = 0;
-+
-+ while (*in_pos < in_size) {
-+ byte = in[*in_pos];
-+ ++*in_pos;
-+
-+ s->vli |= (vli_type)(byte & 0x7F) << s->pos;
-+
-+ if ((byte & 0x80) == 0) {
-+ /* Don't allow non-minimal encodings. */
-+ if (byte == 0 && s->pos != 0)
-+ return XZ_DATA_ERROR;
-+
-+ s->pos = 0;
-+ return XZ_STREAM_END;
-+ }
-+
-+ s->pos += 7;
-+ if (s->pos == 7 * VLI_BYTES_MAX)
-+ return XZ_DATA_ERROR;
-+ }
-+
-+ return XZ_OK;
-+}
-+
-+/*
-+ * Decode the Compressed Data field from a Block. Update and validate
-+ * the observed compressed and uncompressed sizes of the Block so that
-+ * they don't exceed the values possibly stored in the Block Header
-+ * (validation assumes that no integer overflow occurs, since vli_type
-+ * is normally uint64_t). Update the CRC32 if presence of the CRC32
-+ * field was indicated in Stream Header.
-+ *
-+ * Once the decoding is finished, validate that the observed sizes match
-+ * the sizes possibly stored in the Block Header. Update the hash and
-+ * Block count, which are later used to validate the Index field.
-+ */
-+static enum xz_ret INIT dec_block(struct xz_dec *s, struct xz_buf *b)
-+{
-+ enum xz_ret ret;
-+
-+ s->in_start = b->in_pos;
-+ s->out_start = b->out_pos;
-+
-+#ifdef XZ_DEC_BCJ
-+ if (s->bcj_active)
-+ ret = xz_dec_bcj_run(s->bcj, s->lzma2, b);
-+ else
-+#endif
-+ ret = xz_dec_lzma2_run(s->lzma2, b);
-+
-+ s->block.compressed += b->in_pos - s->in_start;
-+ s->block.uncompressed += b->out_pos - s->out_start;
-+
-+ /*
-+ * There is no need to separately check for VLI_UNKNOWN, since
-+ * the observed sizes are always smaller than VLI_UNKNOWN.
-+ */
-+ if (s->block.compressed > s->block_header.compressed
-+ || s->block.uncompressed
-+ > s->block_header.uncompressed)
-+ return XZ_DATA_ERROR;
-+
-+ if (s->check_type == XZ_CHECK_CRC32)
-+ s->crc32 = xz_crc32(b->out + s->out_start,
-+ b->out_pos - s->out_start, s->crc32);
-+
-+ if (ret == XZ_STREAM_END) {
-+ if (s->block_header.compressed != VLI_UNKNOWN
-+ && s->block_header.compressed
-+ != s->block.compressed)
-+ return XZ_DATA_ERROR;
-+
-+ if (s->block_header.uncompressed != VLI_UNKNOWN
-+ && s->block_header.uncompressed
-+ != s->block.uncompressed)
-+ return XZ_DATA_ERROR;
-+
-+ s->block.hash.unpadded += s->block_header.size
-+ + s->block.compressed;
-+
-+#ifdef XZ_DEC_ANY_CHECK
-+ s->block.hash.unpadded += check_sizes[s->check_type];
-+#else
-+ if (s->check_type == XZ_CHECK_CRC32)
-+ s->block.hash.unpadded += 4;
-+#endif
-+
-+ s->block.hash.uncompressed += s->block.uncompressed;
-+ s->block.hash.crc32 = xz_crc32(
-+ (const uint8_t *)&s->block.hash,
-+ sizeof(s->block.hash), s->block.hash.crc32);
-+
-+ ++s->block.count;
-+ }
-+
-+ return ret;
-+}
-+
-+/* Update the Index size and the CRC32 value. */
-+static void INIT index_update(struct xz_dec *s, const struct xz_buf *b)
-+{
-+ size_t in_used = b->in_pos - s->in_start;
-+ s->index.size += in_used;
-+ s->crc32 = xz_crc32(b->in + s->in_start, in_used, s->crc32);
-+}
-+
-+/*
-+ * Decode the Number of Records, Unpadded Size, and Uncompressed Size
-+ * fields from the Index field. That is, Index Padding and CRC32 are not
-+ * decoded by this function.
-+ *
-+ * This can return XZ_OK (more input needed), XZ_STREAM_END (everything
-+ * successfully decoded), or XZ_DATA_ERROR (input is corrupt).
-+ */
-+static enum xz_ret INIT dec_index(struct xz_dec *s, struct xz_buf *b)
-+{
-+ enum xz_ret ret;
-+
-+ do {
-+ ret = dec_vli(s, b->in, &b->in_pos, b->in_size);
-+ if (ret != XZ_STREAM_END) {
-+ index_update(s, b);
-+ return ret;
-+ }
-+
-+ switch (s->index.sequence) {
-+ case SEQ_INDEX_COUNT:
-+ s->index.count = s->vli;
-+
-+ /*
-+ * Validate that the Number of Records field
-+ * indicates the same number of Records as
-+ * there were Blocks in the Stream.
-+ */
-+ if (s->index.count != s->block.count)
-+ return XZ_DATA_ERROR;
-+
-+ s->index.sequence = SEQ_INDEX_UNPADDED;
-+ break;
-+
-+ case SEQ_INDEX_UNPADDED:
-+ s->index.hash.unpadded += s->vli;
-+ s->index.sequence = SEQ_INDEX_UNCOMPRESSED;
-+ break;
-+
-+ case SEQ_INDEX_UNCOMPRESSED:
-+ s->index.hash.uncompressed += s->vli;
-+ s->index.hash.crc32 = xz_crc32(
-+ (const uint8_t *)&s->index.hash,
-+ sizeof(s->index.hash),
-+ s->index.hash.crc32);
-+ --s->index.count;
-+ s->index.sequence = SEQ_INDEX_UNPADDED;
-+ break;
-+ }
-+ } while (s->index.count > 0);
-+
-+ return XZ_STREAM_END;
-+}
-+
-+/*
-+ * Validate that the next four input bytes match the value of s->crc32.
-+ * s->pos must be zero when starting to validate the first byte.
-+ */
-+static enum xz_ret INIT crc32_validate(struct xz_dec *s, struct xz_buf *b)
-+{
-+ do {
-+ if (b->in_pos == b->in_size)
-+ return XZ_OK;
-+
-+ if (((s->crc32 >> s->pos) & 0xFF) != b->in[b->in_pos++])
-+ return XZ_DATA_ERROR;
-+
-+ s->pos += 8;
-+
-+ } while (s->pos < 32);
-+
-+ s->crc32 = 0;
-+ s->pos = 0;
-+
-+ return XZ_STREAM_END;
-+}
-+
-+#ifdef XZ_DEC_ANY_CHECK
-+/*
-+ * Skip over the Check field when the Check ID is not supported.
-+ * Returns true once the whole Check field has been skipped over.
-+ */
-+static bool_t INIT check_skip(struct xz_dec *s, struct xz_buf *b)
-+{
-+ while (s->pos < check_sizes[s->check_type]) {
-+ if (b->in_pos == b->in_size)
-+ return false;
-+
-+ ++b->in_pos;
-+ ++s->pos;
-+ }
-+
-+ s->pos = 0;
-+
-+ return true;
-+}
-+#endif
-+
-+/* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */
-+static enum xz_ret INIT dec_stream_header(struct xz_dec *s)
-+{
-+ if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE))
-+ return XZ_FORMAT_ERROR;
-+
-+ if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0)
-+ != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2))
-+ return XZ_DATA_ERROR;
-+
-+ if (s->temp.buf[HEADER_MAGIC_SIZE] != 0)
-+ return XZ_OPTIONS_ERROR;
-+
-+ /*
-+ * Of integrity checks, we support only none (Check ID = 0) and
-+ * CRC32 (Check ID = 1). However, if XZ_DEC_ANY_CHECK is defined,
-+ * we will accept other check types too, but then the check won't
-+ * be verified and a warning (XZ_UNSUPPORTED_CHECK) will be given.
-+ */
-+ s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1];
-+
-+#ifdef XZ_DEC_ANY_CHECK
-+ if (s->check_type > XZ_CHECK_MAX)
-+ return XZ_OPTIONS_ERROR;
-+
-+ if (s->check_type > XZ_CHECK_CRC32)
-+ return XZ_UNSUPPORTED_CHECK;
-+#else
-+ if (s->check_type > XZ_CHECK_CRC32)
-+ return XZ_OPTIONS_ERROR;
-+#endif
-+
-+ return XZ_OK;
-+}
-+
-+/* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */
-+static enum xz_ret INIT dec_stream_footer(struct xz_dec *s)
-+{
-+ if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE))
-+ return XZ_DATA_ERROR;
-+
-+ if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf))
-+ return XZ_DATA_ERROR;
-+
-+ /*
-+ * Validate Backward Size. Note that we never added the size of the
-+ * Index CRC32 field to s->index.size, thus we use s->index.size / 4
-+ * instead of s->index.size / 4 - 1.
-+ */
-+ if ((s->index.size >> 2) != get_le32(s->temp.buf + 4))
-+ return XZ_DATA_ERROR;
-+
-+ if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type)
-+ return XZ_DATA_ERROR;
-+
-+ /*
-+ * Use XZ_STREAM_END instead of XZ_OK to be more convenient
-+ * for the caller.
-+ */
-+ return XZ_STREAM_END;
-+}
-+
-+/* Decode the Block Header and initialize the filter chain. */
-+static enum xz_ret INIT dec_block_header(struct xz_dec *s)
-+{
-+ enum xz_ret ret;
-+
-+ /*
-+ * Validate the CRC32. We know that the temp buffer is at least
-+ * eight bytes so this is safe.
-+ */
-+ s->temp.size -= 4;
-+ if (xz_crc32(s->temp.buf, s->temp.size, 0)
-+ != get_le32(s->temp.buf + s->temp.size))
-+ return XZ_DATA_ERROR;
-+
-+ s->temp.pos = 2;
-+
-+ /*
-+ * Catch unsupported Block Flags. We support only one or two filters
-+ * in the chain, so we catch that with the same test.
-+ */
-+#ifdef XZ_DEC_BCJ
-+ if (s->temp.buf[1] & 0x3E)
-+#else
-+ if (s->temp.buf[1] & 0x3F)
-+#endif
-+ return XZ_OPTIONS_ERROR;
-+
-+ /* Compressed Size */
-+ if (s->temp.buf[1] & 0x40) {
-+ if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-+ != XZ_STREAM_END)
-+ return XZ_DATA_ERROR;
-+
-+ s->block_header.compressed = s->vli;
-+ } else {
-+ s->block_header.compressed = VLI_UNKNOWN;
-+ }
-+
-+ /* Uncompressed Size */
-+ if (s->temp.buf[1] & 0x80) {
-+ if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size)
-+ != XZ_STREAM_END)
-+ return XZ_DATA_ERROR;
-+
-+ s->block_header.uncompressed = s->vli;
-+ } else {
-+ s->block_header.uncompressed = VLI_UNKNOWN;
-+ }
-+
-+#ifdef XZ_DEC_BCJ
-+ /* If there are two filters, the first one must be a BCJ filter. */
-+ s->bcj_active = s->temp.buf[1] & 0x01;
-+ if (s->bcj_active) {
-+ if (s->temp.size - s->temp.pos < 2)
-+ return XZ_OPTIONS_ERROR;
-+
-+ ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]);
-+ if (ret != XZ_OK)
-+ return ret;
-+
-+ /*
-+ * We don't support custom start offset,
-+ * so Size of Properties must be zero.
-+ */
-+ if (s->temp.buf[s->temp.pos++] != 0x00)
-+ return XZ_OPTIONS_ERROR;
-+ }
-+#endif
-+
-+ /* Valid Filter Flags always take at least two bytes. */
-+ if (s->temp.size - s->temp.pos < 2)
-+ return XZ_DATA_ERROR;
-+
-+ /* Filter ID = LZMA2 */
-+ if (s->temp.buf[s->temp.pos++] != 0x21)
-+ return XZ_OPTIONS_ERROR;
-+
-+ /* Size of Properties = 1-byte Filter Properties */
-+ if (s->temp.buf[s->temp.pos++] != 0x01)
-+ return XZ_OPTIONS_ERROR;
-+
-+ /* Filter Properties contains LZMA2 dictionary size. */
-+ if (s->temp.size - s->temp.pos < 1)
-+ return XZ_DATA_ERROR;
-+
-+ ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]);
-+ if (ret != XZ_OK)
-+ return ret;
-+
-+ /* The rest must be Header Padding. */
-+ while (s->temp.pos < s->temp.size)
-+ if (s->temp.buf[s->temp.pos++] != 0x00)
-+ return XZ_OPTIONS_ERROR;
-+
-+ s->temp.pos = 0;
-+ s->block.compressed = 0;
-+ s->block.uncompressed = 0;
-+
-+ return XZ_OK;
-+}
-+
-+static enum xz_ret INIT dec_main(struct xz_dec *s, struct xz_buf *b)
-+{
-+ enum xz_ret ret;
-+
-+ /*
-+ * Store the start position for the case when we are in the middle
-+ * of the Index field.
-+ */
-+ s->in_start = b->in_pos;
-+
-+ while (true) {
-+ switch (s->sequence) {
-+ case SEQ_STREAM_HEADER:
-+ /*
-+ * Stream Header is copied to s->temp, and then
-+ * decoded from there. This way if the caller
-+ * gives us only little input at a time, we can
-+ * still keep the Stream Header decoding code
-+ * simple. Similar approach is used in many places
-+ * in this file.
-+ */
-+ if (!fill_temp(s, b))
-+ return XZ_OK;
-+
-+ /*
-+ * If dec_stream_header() returns
-+ * XZ_UNSUPPORTED_CHECK, it is still possible
-+ * to continue decoding if working in multi-call
-+ * mode. Thus, update s->sequence before calling
-+ * dec_stream_header().
-+ */
-+ s->sequence = SEQ_BLOCK_START;
-+
-+ ret = dec_stream_header(s);
-+ if (ret != XZ_OK)
-+ return ret;
-+
-+ case SEQ_BLOCK_START:
-+ /* We need one byte of input to continue. */
-+ if (b->in_pos == b->in_size)
-+ return XZ_OK;
-+
-+ /* See if this is the beginning of the Index field. */
-+ if (b->in[b->in_pos] == 0) {
-+ s->in_start = b->in_pos++;
-+ s->sequence = SEQ_INDEX;
-+ break;
-+ }
-+
-+ /*
-+ * Calculate the size of the Block Header and
-+ * prepare to decode it.
-+ */
-+ s->block_header.size
-+ = ((uint32_t)b->in[b->in_pos] + 1) * 4;
-+
-+ s->temp.size = s->block_header.size;
-+ s->temp.pos = 0;
-+ s->sequence = SEQ_BLOCK_HEADER;
-+
-+ case SEQ_BLOCK_HEADER:
-+ if (!fill_temp(s, b))
-+ return XZ_OK;
-+
-+ ret = dec_block_header(s);
-+ if (ret != XZ_OK)
-+ return ret;
-+
-+ s->sequence = SEQ_BLOCK_UNCOMPRESS;
-+
-+ case SEQ_BLOCK_UNCOMPRESS:
-+ ret = dec_block(s, b);
-+ if (ret != XZ_STREAM_END)
-+ return ret;
-+
-+ s->sequence = SEQ_BLOCK_PADDING;
-+
-+ case SEQ_BLOCK_PADDING:
-+ /*
-+ * Size of Compressed Data + Block Padding
-+ * must be a multiple of four. We don't need
-+ * s->block.compressed for anything else
-+ * anymore, so we use it here to test the size
-+ * of the Block Padding field.
-+ */
-+ while (s->block.compressed & 3) {
-+ if (b->in_pos == b->in_size)
-+ return XZ_OK;
-+
-+ if (b->in[b->in_pos++] != 0)
-+ return XZ_DATA_ERROR;
-+
-+ ++s->block.compressed;
-+ }
-+
-+ s->sequence = SEQ_BLOCK_CHECK;
-+
-+ case SEQ_BLOCK_CHECK:
-+ if (s->check_type == XZ_CHECK_CRC32) {
-+ ret = crc32_validate(s, b);
-+ if (ret != XZ_STREAM_END)
-+ return ret;
-+ }
-+#ifdef XZ_DEC_ANY_CHECK
-+ else if (!check_skip(s, b)) {
-+ return XZ_OK;
-+ }
-+#endif
-+
-+ s->sequence = SEQ_BLOCK_START;
-+ break;
-+
-+ case SEQ_INDEX:
-+ ret = dec_index(s, b);
-+ if (ret != XZ_STREAM_END)
-+ return ret;
-+
-+ s->sequence = SEQ_INDEX_PADDING;
-+
-+ case SEQ_INDEX_PADDING:
-+ while ((s->index.size + (b->in_pos - s->in_start))
-+ & 3) {
-+ if (b->in_pos == b->in_size) {
-+ index_update(s, b);
-+ return XZ_OK;
-+ }
-+
-+ if (b->in[b->in_pos++] != 0)
-+ return XZ_DATA_ERROR;
-+ }
-+
-+ /* Finish the CRC32 value and Index size. */
-+ index_update(s, b);
-+
-+ /* Compare the hashes to validate the Index field. */
-+ if (!memeq(&s->block.hash, &s->index.hash,
-+ sizeof(s->block.hash)))
-+ return XZ_DATA_ERROR;
-+
-+ s->sequence = SEQ_INDEX_CRC32;
-+
-+ case SEQ_INDEX_CRC32:
-+ ret = crc32_validate(s, b);
-+ if (ret != XZ_STREAM_END)
-+ return ret;
-+
-+ s->temp.size = STREAM_HEADER_SIZE;
-+ s->sequence = SEQ_STREAM_FOOTER;
-+
-+ case SEQ_STREAM_FOOTER:
-+ if (!fill_temp(s, b))
-+ return XZ_OK;
-+
-+ return dec_stream_footer(s);
-+ }
-+ }
-+
-+ /* Never reached */
-+}
-+
-+XZ_EXTERN void INIT xz_dec_reset(struct xz_dec *s)
-+{
-+ s->sequence = SEQ_STREAM_HEADER;
-+ s->allow_buf_error = false;
-+ s->pos = 0;
-+ s->crc32 = 0;
-+ memzero(&s->block, sizeof(s->block));
-+ memzero(&s->index, sizeof(s->index));
-+ s->temp.pos = 0;
-+ s->temp.size = STREAM_HEADER_SIZE;
-+}
-+
-+/*
-+ * xz_dec_run() is a wrapper for dec_main() to handle some special cases in
-+ * multi-call and single-call decoding.
-+ *
-+ * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we
-+ * are not going to make any progress anymore. This is to prevent the caller
-+ * from calling us infinitely when the input file is truncated or otherwise
-+ * corrupt. Since zlib-style API allows that the caller fills the input buffer
-+ * only when the decoder doesn't produce any new output, we have to be careful
-+ * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only
-+ * after the second consecutive call to xz_dec_run() that makes no progress.
-+ *
-+ * In single-call mode, if we couldn't decode everything and no error
-+ * occurred, either the input is truncated or the output buffer is too small.
-+ * Since we know that the last input byte never produces any output, we know
-+ * that if all the input was consumed and decoding wasn't finished, the file
-+ * must be corrupt. Otherwise the output buffer has to be too small or the
-+ * file is corrupt in a way that decoding it produces too big output.
-+ *
-+ * If single-call decoding fails, we reset b->in_pos and b->out_pos back to
-+ * their original values. This is because with some filter chains there won't
-+ * be any valid uncompressed data in the output buffer unless the decoding
-+ * actually succeeds (that's the price to pay of using the output buffer as
-+ * the workspace).
-+ */
-+XZ_EXTERN enum xz_ret INIT xz_dec_run(struct xz_dec *s, struct xz_buf *b)
-+{
-+ size_t in_start;
-+ size_t out_start;
-+ enum xz_ret ret;
-+
-+ if (DEC_IS_SINGLE(s->mode))
-+ xz_dec_reset(s);
-+
-+ in_start = b->in_pos;
-+ out_start = b->out_pos;
-+ ret = dec_main(s, b);
-+
-+ if (DEC_IS_SINGLE(s->mode)) {
-+ if (ret == XZ_OK)
-+ ret = b->in_pos == b->in_size
-+ ? XZ_DATA_ERROR : XZ_BUF_ERROR;
-+
-+ if (ret != XZ_STREAM_END) {
-+ b->in_pos = in_start;
-+ b->out_pos = out_start;
-+ }
-+
-+ } else if (ret == XZ_OK && in_start == b->in_pos
-+ && out_start == b->out_pos) {
-+ if (s->allow_buf_error)
-+ ret = XZ_BUF_ERROR;
-+
-+ s->allow_buf_error = true;
-+ } else {
-+ s->allow_buf_error = false;
-+ }
-+
-+ return ret;
-+}
-+
-+XZ_EXTERN struct xz_dec *INIT xz_dec_init(enum xz_mode mode, uint32_t dict_max)
-+{
-+ struct xz_dec *s = malloc(sizeof(*s));
-+ if (s == NULL)
-+ return NULL;
-+
-+ s->mode = mode;
-+
-+#ifdef XZ_DEC_BCJ
-+ s->bcj = xz_dec_bcj_create(DEC_IS_SINGLE(mode));
-+ if (s->bcj == NULL)
-+ goto error_bcj;
-+#endif
-+
-+ s->lzma2 = xz_dec_lzma2_create(mode, dict_max);
-+ if (s->lzma2 == NULL)
-+ goto error_lzma2;
-+
-+ xz_dec_reset(s);
-+ return s;
-+
-+error_lzma2:
-+#ifdef XZ_DEC_BCJ
-+ xz_dec_bcj_end(s->bcj);
-+error_bcj:
-+#endif
-+ free(s);
-+ return NULL;
-+}
-+
-+XZ_EXTERN void INIT xz_dec_end(struct xz_dec *s)
-+{
-+ if (s != NULL) {
-+ xz_dec_lzma2_end(s->lzma2);
-+#ifdef XZ_DEC_BCJ
-+ xz_dec_bcj_end(s->bcj);
-+#endif
-+ free(s);
-+ }
-+}
-diff --git a/xen/common/xz/lzma2.h b/xen/common/xz/lzma2.h
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/lzma2.h
-@@ -0,0 +1,204 @@
-+/*
-+ * LZMA2 definitions
-+ *
-+ * Authors: Lasse Collin <lasse.collin@tukaani.org>
-+ * Igor Pavlov <http://7-zip.org/>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#ifndef XZ_LZMA2_H
-+#define XZ_LZMA2_H
-+
-+/* Range coder constants */
-+#define RC_SHIFT_BITS 8
-+#define RC_TOP_BITS 24
-+#define RC_TOP_VALUE (1 << RC_TOP_BITS)
-+#define RC_BIT_MODEL_TOTAL_BITS 11
-+#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
-+#define RC_MOVE_BITS 5
-+
-+/*
-+ * Maximum number of position states. A position state is the lowest pb
-+ * number of bits of the current uncompressed offset. In some places there
-+ * are different sets of probabilities for different position states.
-+ */
-+#define POS_STATES_MAX (1 << 4)
-+
-+/*
-+ * This enum is used to track which LZMA symbols have occurred most recently
-+ * and in which order. This information is used to predict the next symbol.
-+ *
-+ * Symbols:
-+ * - Literal: One 8-bit byte
-+ * - Match: Repeat a chunk of data at some distance
-+ * - Long repeat: Multi-byte match at a recently seen distance
-+ * - Short repeat: One-byte repeat at a recently seen distance
-+ *
-+ * The symbol names are in from STATE_oldest_older_previous. REP means
-+ * either short or long repeated match, and NONLIT means any non-literal.
-+ */
-+enum lzma_state {
-+ STATE_LIT_LIT,
-+ STATE_MATCH_LIT_LIT,
-+ STATE_REP_LIT_LIT,
-+ STATE_SHORTREP_LIT_LIT,
-+ STATE_MATCH_LIT,
-+ STATE_REP_LIT,
-+ STATE_SHORTREP_LIT,
-+ STATE_LIT_MATCH,
-+ STATE_LIT_LONGREP,
-+ STATE_LIT_SHORTREP,
-+ STATE_NONLIT_MATCH,
-+ STATE_NONLIT_REP
-+};
-+
-+/* Total number of states */
-+#define STATES 12
-+
-+/* The lowest 7 states indicate that the previous state was a literal. */
-+#define LIT_STATES 7
-+
-+/* Indicate that the latest symbol was a literal. */
-+static inline void INIT lzma_state_literal(enum lzma_state *state)
-+{
-+ if (*state <= STATE_SHORTREP_LIT_LIT)
-+ *state = STATE_LIT_LIT;
-+ else if (*state <= STATE_LIT_SHORTREP)
-+ *state -= 3;
-+ else
-+ *state -= 6;
-+}
-+
-+/* Indicate that the latest symbol was a match. */
-+static inline void INIT lzma_state_match(enum lzma_state *state)
-+{
-+ *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH;
-+}
-+
-+/* Indicate that the latest state was a long repeated match. */
-+static inline void INIT lzma_state_long_rep(enum lzma_state *state)
-+{
-+ *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP;
-+}
-+
-+/* Indicate that the latest symbol was a short match. */
-+static inline void INIT lzma_state_short_rep(enum lzma_state *state)
-+{
-+ *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP;
-+}
-+
-+/* Test if the previous symbol was a literal. */
-+static inline bool_t INIT lzma_state_is_literal(enum lzma_state state)
-+{
-+ return state < LIT_STATES;
-+}
-+
-+/* Each literal coder is divided in three sections:
-+ * - 0x001-0x0FF: Without match byte
-+ * - 0x101-0x1FF: With match byte; match bit is 0
-+ * - 0x201-0x2FF: With match byte; match bit is 1
-+ *
-+ * Match byte is used when the previous LZMA symbol was something else than
-+ * a literal (that is, it was some kind of match).
-+ */
-+#define LITERAL_CODER_SIZE 0x300
-+
-+/* Maximum number of literal coders */
-+#define LITERAL_CODERS_MAX (1 << 4)
-+
-+/* Minimum length of a match is two bytes. */
-+#define MATCH_LEN_MIN 2
-+
-+/* Match length is encoded with 4, 5, or 10 bits.
-+ *
-+ * Length Bits
-+ * 2-9 4 = Choice=0 + 3 bits
-+ * 10-17 5 = Choice=1 + Choice2=0 + 3 bits
-+ * 18-273 10 = Choice=1 + Choice2=1 + 8 bits
-+ */
-+#define LEN_LOW_BITS 3
-+#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
-+#define LEN_MID_BITS 3
-+#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
-+#define LEN_HIGH_BITS 8
-+#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
-+#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
-+
-+/*
-+ * Maximum length of a match is 273 which is a result of the encoding
-+ * described above.
-+ */
-+#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
-+
-+/*
-+ * Different sets of probabilities are used for match distances that have
-+ * very short match length: Lengths of 2, 3, and 4 bytes have a separate
-+ * set of probabilities for each length. The matches with longer length
-+ * use a shared set of probabilities.
-+ */
-+#define DIST_STATES 4
-+
-+/*
-+ * Get the index of the appropriate probability array for decoding
-+ * the distance slot.
-+ */
-+static inline uint32_t INIT lzma_get_dist_state(uint32_t len)
-+{
-+ return len < DIST_STATES + MATCH_LEN_MIN
-+ ? len - MATCH_LEN_MIN : DIST_STATES - 1;
-+}
-+
-+/*
-+ * The highest two bits of a 32-bit match distance are encoded using six bits.
-+ * This six-bit value is called a distance slot. This way encoding a 32-bit
-+ * value takes 6-36 bits, larger values taking more bits.
-+ */
-+#define DIST_SLOT_BITS 6
-+#define DIST_SLOTS (1 << DIST_SLOT_BITS)
-+
-+/* Match distances up to 127 are fully encoded using probabilities. Since
-+ * the highest two bits (distance slot) are always encoded using six bits,
-+ * the distances 0-3 don't need any additional bits to encode, since the
-+ * distance slot itself is the same as the actual distance. DIST_MODEL_START
-+ * indicates the first distance slot where at least one additional bit is
-+ * needed.
-+ */
-+#define DIST_MODEL_START 4
-+
-+/*
-+ * Match distances greater than 127 are encoded in three pieces:
-+ * - distance slot: the highest two bits
-+ * - direct bits: 2-26 bits below the highest two bits
-+ * - alignment bits: four lowest bits
-+ *
-+ * Direct bits don't use any probabilities.
-+ *
-+ * The distance slot value of 14 is for distances 128-191.
-+ */
-+#define DIST_MODEL_END 14
-+
-+/* Distance slots that indicate a distance <= 127. */
-+#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
-+#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
-+
-+/*
-+ * For match distances greater than 127, only the highest two bits and the
-+ * lowest four bits (alignment) is encoded using probabilities.
-+ */
-+#define ALIGN_BITS 4
-+#define ALIGN_SIZE (1 << ALIGN_BITS)
-+#define ALIGN_MASK (ALIGN_SIZE - 1)
-+
-+/* Total number of all probability variables */
-+#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
-+
-+/*
-+ * LZMA remembers the four most recent match distances. Reusing these
-+ * distances tends to take less space than re-encoding the actual
-+ * distance value.
-+ */
-+#define REPS 4
-+
-+#endif
-diff --git a/xen/common/xz/private.h b/xen/common/xz/private.h
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/private.h
-@@ -0,0 +1,271 @@
-+/*
-+ * Private includes and definitions
-+ *
-+ * Author: Lasse Collin <lasse.collin@tukaani.org>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#ifndef XZ_PRIVATE_H
-+#define XZ_PRIVATE_H
-+
-+#include <xen/kernel.h>
-+#include <asm/byteorder.h>
-+#define get_le32(p) le32_to_cpup((const uint32_t *)(p))
-+
-+#if 1 /* ndef CONFIG_??? */
-+static inline u32 INIT get_unaligned_le32(void *p)
-+{
-+ return le32_to_cpup(p);
-+}
-+
-+static inline void INIT put_unaligned_le32(u32 val, void *p)
-+{
-+ *(__force __le32*)p = cpu_to_le32(val);
-+}
-+#else
-+#include <asm/unaligned.h>
-+
-+static inline u32 INIT get_unaligned_le32(void *p)
-+{
-+ return le32_to_cpu(__get_unaligned(p, 4));
-+}
-+
-+static inline void INIT put_unaligned_le32(u32 val, void *p)
-+{
-+ __put_unaligned(cpu_to_le32(val), p, 4);
-+}
-+#endif
-+
-+#define false 0
-+#define true 1
-+
-+/**
-+ * enum xz_mode - Operation mode
-+ *
-+ * @XZ_SINGLE: Single-call mode. This uses less RAM than
-+ * than multi-call modes, because the LZMA2
-+ * dictionary doesn't need to be allocated as
-+ * part of the decoder state. All required data
-+ * structures are allocated at initialization,
-+ * so xz_dec_run() cannot return XZ_MEM_ERROR.
-+ * @XZ_PREALLOC: Multi-call mode with preallocated LZMA2
-+ * dictionary buffer. All data structures are
-+ * allocated at initialization, so xz_dec_run()
-+ * cannot return XZ_MEM_ERROR.
-+ * @XZ_DYNALLOC: Multi-call mode. The LZMA2 dictionary is
-+ * allocated once the required size has been
-+ * parsed from the stream headers. If the
-+ * allocation fails, xz_dec_run() will return
-+ * XZ_MEM_ERROR.
-+ *
-+ * It is possible to enable support only for a subset of the above
-+ * modes at compile time by defining XZ_DEC_SINGLE, XZ_DEC_PREALLOC,
-+ * or XZ_DEC_DYNALLOC. The xz_dec kernel module is always compiled
-+ * with support for all operation modes, but the preboot code may
-+ * be built with fewer features to minimize code size.
-+ */
-+enum xz_mode {
-+ XZ_SINGLE,
-+ XZ_PREALLOC,
-+ XZ_DYNALLOC
-+};
-+
-+/**
-+ * enum xz_ret - Return codes
-+ * @XZ_OK: Everything is OK so far. More input or more
-+ * output space is required to continue. This
-+ * return code is possible only in multi-call mode
-+ * (XZ_PREALLOC or XZ_DYNALLOC).
-+ * @XZ_STREAM_END: Operation finished successfully.
-+ * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding
-+ * is still possible in multi-call mode by simply
-+ * calling xz_dec_run() again.
-+ * Note that this return value is used only if
-+ * XZ_DEC_ANY_CHECK was defined at build time,
-+ * which is not used in the kernel. Unsupported
-+ * check types return XZ_OPTIONS_ERROR if
-+ * XZ_DEC_ANY_CHECK was not defined at build time.
-+ * @XZ_MEM_ERROR: Allocating memory failed. This return code is
-+ * possible only if the decoder was initialized
-+ * with XZ_DYNALLOC. The amount of memory that was
-+ * tried to be allocated was no more than the
-+ * dict_max argument given to xz_dec_init().
-+ * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than
-+ * allowed by the dict_max argument given to
-+ * xz_dec_init(). This return value is possible
-+ * only in multi-call mode (XZ_PREALLOC or
-+ * XZ_DYNALLOC); the single-call mode (XZ_SINGLE)
-+ * ignores the dict_max argument.
-+ * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic
-+ * bytes).
-+ * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested
-+ * compression options. In the decoder this means
-+ * that the header CRC32 matches, but the header
-+ * itself specifies something that we don't support.
-+ * @XZ_DATA_ERROR: Compressed data is corrupt.
-+ * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly
-+ * different between multi-call and single-call
-+ * mode; more information below.
-+ *
-+ * In multi-call mode, XZ_BUF_ERROR is returned when two consecutive calls
-+ * to XZ code cannot consume any input and cannot produce any new output.
-+ * This happens when there is no new input available, or the output buffer
-+ * is full while at least one output byte is still pending. Assuming your
-+ * code is not buggy, you can get this error only when decoding a compressed
-+ * stream that is truncated or otherwise corrupt.
-+ *
-+ * In single-call mode, XZ_BUF_ERROR is returned only when the output buffer
-+ * is too small or the compressed input is corrupt in a way that makes the
-+ * decoder produce more output than the caller expected. When it is
-+ * (relatively) clear that the compressed input is truncated, XZ_DATA_ERROR
-+ * is used instead of XZ_BUF_ERROR.
-+ */
-+enum xz_ret {
-+ XZ_OK,
-+ XZ_STREAM_END,
-+ XZ_UNSUPPORTED_CHECK,
-+ XZ_MEM_ERROR,
-+ XZ_MEMLIMIT_ERROR,
-+ XZ_FORMAT_ERROR,
-+ XZ_OPTIONS_ERROR,
-+ XZ_DATA_ERROR,
-+ XZ_BUF_ERROR
-+};
-+
-+/**
-+ * struct xz_buf - Passing input and output buffers to XZ code
-+ * @in: Beginning of the input buffer. This may be NULL if and only
-+ * if in_pos is equal to in_size.
-+ * @in_pos: Current position in the input buffer. This must not exceed
-+ * in_size.
-+ * @in_size: Size of the input buffer
-+ * @out: Beginning of the output buffer. This may be NULL if and only
-+ * if out_pos is equal to out_size.
-+ * @out_pos: Current position in the output buffer. This must not exceed
-+ * out_size.
-+ * @out_size: Size of the output buffer
-+ *
-+ * Only the contents of the output buffer from out[out_pos] onward, and
-+ * the variables in_pos and out_pos are modified by the XZ code.
-+ */
-+struct xz_buf {
-+ const uint8_t *in;
-+ size_t in_pos;
-+ size_t in_size;
-+
-+ uint8_t *out;
-+ size_t out_pos;
-+ size_t out_size;
-+};
-+
-+/**
-+ * struct xz_dec - Opaque type to hold the XZ decoder state
-+ */
-+struct xz_dec;
-+
-+/* If no specific decoding mode is requested, enable support for all modes. */
-+#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
-+ && !defined(XZ_DEC_DYNALLOC)
-+# define XZ_DEC_SINGLE
-+# define XZ_DEC_PREALLOC
-+# define XZ_DEC_DYNALLOC
-+#endif
-+
-+/*
-+ * The DEC_IS_foo(mode) macros are used in "if" statements. If only some
-+ * of the supported modes are enabled, these macros will evaluate to true or
-+ * false at compile time and thus allow the compiler to omit unneeded code.
-+ */
-+#ifdef XZ_DEC_SINGLE
-+# define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
-+#else
-+# define DEC_IS_SINGLE(mode) (false)
-+#endif
-+
-+#ifdef XZ_DEC_PREALLOC
-+# define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
-+#else
-+# define DEC_IS_PREALLOC(mode) (false)
-+#endif
-+
-+#ifdef XZ_DEC_DYNALLOC
-+# define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
-+#else
-+# define DEC_IS_DYNALLOC(mode) (false)
-+#endif
-+
-+#if !defined(XZ_DEC_SINGLE)
-+# define DEC_IS_MULTI(mode) (true)
-+#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
-+# define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
-+#else
-+# define DEC_IS_MULTI(mode) (false)
-+#endif
-+
-+/*
-+ * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
-+ * XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
-+ */
-+#ifndef XZ_DEC_BCJ
-+# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
-+ || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
-+ || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
-+ || defined(XZ_DEC_SPARC)
-+# define XZ_DEC_BCJ
-+# endif
-+#endif
-+
-+/*
-+ * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
-+ * before calling xz_dec_lzma2_run().
-+ */
-+XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
-+ uint32_t dict_max);
-+
-+/*
-+ * Decode the LZMA2 properties (one byte) and reset the decoder. Return
-+ * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
-+ * big enough, and XZ_OPTIONS_ERROR if props indicates something that this
-+ * decoder doesn't support.
-+ */
-+XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s,
-+ uint8_t props);
-+
-+/* Decode raw LZMA2 stream from b->in to b->out. */
-+XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
-+ struct xz_buf *b);
-+
-+/* Free the memory allocated for the LZMA2 decoder. */
-+XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s);
-+
-+#ifdef XZ_DEC_BCJ
-+/*
-+ * Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
-+ * calling xz_dec_bcj_run().
-+ */
-+XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool_t single_call);
-+
-+/*
-+ * Decode the Filter ID of a BCJ filter. This implementation doesn't
-+ * support custom start offsets, so no decoding of Filter Properties
-+ * is needed. Returns XZ_OK if the given Filter ID is supported.
-+ * Otherwise XZ_OPTIONS_ERROR is returned.
-+ */
-+XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id);
-+
-+/*
-+ * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
-+ * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
-+ * must be called directly.
-+ */
-+XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
-+ struct xz_dec_lzma2 *lzma2,
-+ struct xz_buf *b);
-+
-+/* Free the memory allocated for the BCJ filters. */
-+#define xz_dec_bcj_end(s) free(s)
-+#endif
-+
-+#endif
-diff --git a/xen/common/xz/stream.h b/xen/common/xz/stream.h
-new file mode 100644
---- /dev/null
-+++ b/xen/common/xz/stream.h
-@@ -0,0 +1,55 @@
-+/*
-+ * Definitions for handling the .xz file format
-+ *
-+ * Author: Lasse Collin <lasse.collin@tukaani.org>
-+ *
-+ * This file has been put into the public domain.
-+ * You can do whatever you want with this file.
-+ */
-+
-+#ifndef XZ_STREAM_H
-+#define XZ_STREAM_H
-+
-+/*
-+ * See the .xz file format specification at
-+ * http://tukaani.org/xz/xz-file-format.txt
-+ * to understand the container format.
-+ */
-+
-+#define STREAM_HEADER_SIZE 12
-+
-+#define HEADER_MAGIC "\3757zXZ"
-+#define HEADER_MAGIC_SIZE 6
-+
-+#define FOOTER_MAGIC "YZ"
-+#define FOOTER_MAGIC_SIZE 2
-+
-+/*
-+ * Variable-length integer can hold a 63-bit unsigned integer or a special
-+ * value indicating that the value is unknown.
-+ *
-+ * Experimental: vli_type can be defined to uint32_t to save a few bytes
-+ * in code size (no effect on speed). Doing so limits the uncompressed and
-+ * compressed size of the file to less than 256 MiB and may also weaken
-+ * error detection slightly.
-+ */
-+typedef uint64_t vli_type;
-+
-+#define VLI_MAX ((vli_type)-1 / 2)
-+#define VLI_UNKNOWN ((vli_type)-1)
-+
-+/* Maximum encoded size of a VLI */
-+#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
-+
-+/* Integrity Check types */
-+enum xz_check {
-+ XZ_CHECK_NONE = 0,
-+ XZ_CHECK_CRC32 = 1,
-+ XZ_CHECK_CRC64 = 4,
-+ XZ_CHECK_SHA256 = 10
-+};
-+
-+/* Maximum possible Check ID */
-+#define XZ_CHECK_MAX 15
-+
-+#endif
-diff --git a/xen/include/xen/decompress.h b/xen/include/xen/decompress.h
---- a/xen/include/xen/decompress.h
-+++ b/xen/include/xen/decompress.h
-@@ -31,7 +31,7 @@
- * dependent).
- */
-
--decompress_fn bunzip2, unlzma, unlzo;
-+decompress_fn bunzip2, unxz, unlzma, unlzo;
-
- int decompress(void *inbuf, unsigned int len, void *outbuf); \ No newline at end of file